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SUMMARY
We review the definitions of widely used concentration metrics such as the concentration ratio, the HHI

index and the Gini and clarify their meaning and relationships. This new analytic framework helps clarify

the apparent arbitrariness of simple concentration indexes and brings to the fore the underlying unifying

concept behind these metrics, thereby enabling their more informed use in portfolio and risk manage-

ment applications. We also propose that the sensitivity of concentration indexes to growing concentra-

tion should be a defining criterion for adopting an index and explore the sensitivity of common indexes

to changing portfolio concentrations. We show that this sensitivity can vary significantly between indexes

for parametric families of portfolio distributions and hence selecting and using a simple concentration

index should take this aspect carefully into consideration.

The white paper has three sections:

• A concept section discussing the issues and the proposal in non-technical terms,
• a technical paper offering precise definitions and numerical studies and
• an open source implementation section

Further Resources
The OpenRisk Academy offers a range of online courses around credit concentration which utilize the

latest in interactive eLearning tools, for example:

• Introduction to Name Concentration Measurement,

• Introduction to Sector Concentration Measurement,

• Credit Concentration Add-Ons in the UK Pillar IImethodology

Please inquire at info@openrisk.eu about course schedules

OpenRisk
OpenRisk is an independent provider of training and risk analysis tools to the broader financial services

community. Our mission is captured by the motto: The open future of risk management. Learn more

about our mission at: www.openrisk.eu

Copyright 2015, OpenRisk. All rights reserved.
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Concept Paper
Credit concentration in asset portfolios is an important example of risk concentration. It arises from

imperfect diversification of ”idiosyncratic” or ”specific” risks arising from small portfolio size or unusually

large exposures to individual clients (counterparties), sectors, products, sovereigns or regions.

Over the course of the years, a wide variety of methods have been developed to assist with the quantifi-

cation of credit concentration risk. For a broad overview of the state of the art see [1].

It is now customary to distinguish between so-called ad-hoc (also called model-free) methods such as
the famous Herfindahl-Hirschman index versus methods based on credit portfolio models (elso called eco-
nomic capital models). Ad hoc measures generally use only exposure data. While such data may still be

derived from other models (e.g. EAD models) there is the implicit notion that the ”real” risk model con-

tent (and model risk) comes from the use of data such as default probabilities and correlations between

credit risks. Therefore, model-based approaches are considered to have a higher informational value

and in the past decade there has been an almost exclusive focus on credit portfolio models (or portfolio

model approximations) as the primary means for quantifying credit concentrations.

Ad-hoc measures are a standard part of the regulatory toolkit (for example Working Paper No 23, ”The

Proposed Revised Ratings Based Approach” for Securitisation and references to therein for identifying a

”granular pool” of securitised assets and also in the context of Solvency II, Joint Forum Stocktaking on the

use of credit ratings Jun 2009. We will not attempt an exhaustive review of the use of such metrics as

several relevant references already provide this [2, 1, 3].

The original Basel II consultative document included the HHI concentration index as input into the so

called granularity adjustment (was eventually dropped)[4]. The HHI indicator is quite flexible and has

been used to measure name, asset or geographic concentration[5]. A review of concentration indicators

and methodologies applicable when using aggregate data are discussed in Avila [6].

Pros and Cons of the two approaches
While the criticism of simple approaches is entirely valid, it is very instructive to try to understand the

”ad-hoc” indices as they are not without significant advantages:

• They are based on simple formulas and thus offer consistent and transparent estimates across
portfolios and firms

• Their simplicity leads also to practical (e.g., easy and fast) calculations

• Their lack of risk sensitivity can, in-principle, be remedied by using risk adjusted exposures (e.g.,
expected loss)
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At the same time, while modern credit portfolio modeling frameworks are in principle a powerful tool for

tackling issues of credit risk concentration they have a number of significant weaknesses:

• There is a variety of possible models with potential for wide variability of results (model risk)

• With the possible exception of name concentration, it is neither obvious nor has there been ade-
quate exploration and standardization of concentration measure extraction from a ”full”model

• Portfolio models are significantly more difficult to implement and use

Given this rather inconclusive state of affairs, in this white paper we revisit and explore the so-called

ad-hoc measures with a view to help clarify their meaning and fitness for use.

Ad-hoc concentration measures
Our focus is instead on the interpretation and relationships. This aspect is decidedly less developed and
understood in credit risk context. We will discuss specifically the linkages between the following:

Box 1. Commonly used concentration indexes
• The simple Concentration Ratio (based on the fractional size or large expo-
sures)

• The famous Herfindahl-Hirschman index (sum of squared exposure weights)

• The equally famous Gini index (based on the rank ordering of exposures)

• The more technical Shannon and Hannah-Kay indices

These concentration indices are called ”ad-hoc” because of three primary reasons:

• They do not use all available risk information. Hence there is a somewhat arbitrary focus on expo-
sure data, although quite obviously exposure is a key driver of concentration

• There are no intrinsically defined benchmark values for the concentration thresholds of each index.
Despite the long use in policy work, the ”calibration” of what constitutes a concentrated portfolio is

essentially a convention

• As we saw, there are multiple possible indexes, with unclear relationships between the different
measures.

The relationship of the different ad-hoc measures
To unify the different concentration metrics such as the concentration ratio, the HHI, the Gini etc. we

recast what these indices measure by tracking what happens to a small unit exposure. To do that, we first
sort our exposures from largest to smallest.

The two key ”outcomes” we track are the following:
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• If we pick a unit exposure (say a single euro/dollar) at random, which exposure is our single euro

part of? That is, what is its rank ordering?

• How large is the exposure to which our random unit belongs to?

Box 2. Key concept
Consider a single exposure E (say 100mln EUR to counterparty A). Calculate its frac-

tion of the total portfolio exposure ET (say 10 bln total). This fraction (1 %) is also

the probability that a unit of exposure (e.g. a single euro) drawn at random from the
portfolio would be part of the exposure to counterparty A.

While quite simple, this concept allows us to express all the various concentration indices in a probabilistic

language of expectations:

Box 3. Re-interpretation of the various concentration indices
• The concentration ratio captures the probability that a euro of exposure is part
of the largest k exposures

• The HHI index captures the expected size of the exposure to which a euro ex-
posure belongs

• The Gini index captures the expected rank order of the exposure to which a
euro exposure belongs

• The Shannon index captures the number of ways we can arrange unit expo-
sures to construct our actual portfolio distribution

Other less used measures such as the Hannah-Kay family are also integrated. This unified language

suggests that the different ad-hoc indices are essentially just different ways of assessing the likelihood of
having a relatively large exposure.

Which index to choose?
While were able to rationalize the variety of ad-hoc concentration indexes as expectations of either expo-

sure or rank-order value, the framework does not allow in itself to select some of these measures as the

preferred means for assessing concentration. A set of criteria that over time has being established as a

desirable list is discussed e.g., in in [7, 8, 9, 1] and is indicatively listed here:

1. The reduction of a loan exposure and an equal increase of a bigger loan must not decrease the

concentration measure (transfer principle).

2. The measure of concentration attains its minimum value, when all loans are of equal size (uniform

distribution principle).

3. If two portfolios, which are composed of the same number of loans, satisfy that the aggregate size

of the k biggest loans of the first portfolio is greater or equal to the size of the k biggest loans in

the second portfolio for 1 ≤ k ≤ N , then the same inequality must hold between the measures of

concentration in the two portfolios (Lorenz-criterion).
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4. If two or more loans aremerged, themeasure of concentrationmust not decrease (superadditivity).

5. Consider a portfolio consisting of loans of equal size. The measure of concentration must not

increase with an increase in the number of loans (in- dependence of loan quantity).

6. Granting an additional loan of a relatively low amount does not increase the concentration mea-

sure. More formally, if s denotes a certain percentage of the total exposure and a new loan with a

relative share of sn s of the total exposure is granted, then the concentration measure does not

increase (irrelevance of small exposures).

Testing the standard indices against these criteria shows that they are indeed generally satisfied, which

does not help to select which metric to use.
The problem of selecting the ”best” metric to capture the concentration of a portfolio distribution is

actually too abstract (not well defined). To achieve more definiteness and narrow down choices we must

set a context, in particular around the typical nature of the portfolio distribution and possibly also the

intended use of the index (e.g. for different tasks around risk and capital management).

The sensitivity of a concentration index to a change in large exposures is an important feature that should
enhance its suitability as a warning signal for a continuously monitored portfolio. Sensitivity to ”large

exposures” is not easily defined for a completely general portfolio distribution. In the technical part we

explore the behavior of concentration indexes for representative families of distributions which, while

not the general case, provide valuable insights.

Box 4. Conclusions on the sensitivity of concentration indexes
• The concentration ratio and the Gini are more sensitive indices

• The HHI index is a less sensitive index

• The Shannon index and Hannah-Kay indexes offer intermediate performance
(in terms of sensitivity)



Technical Paper
A unified probabilistic interpretation of concentration measures
In this section we recast several familiar concentration risk measures and concepts in a unified prob-

abilistic language. Our core mathematical object is the distribution of n ”exposures” Ei, i ∈ [1, n]. An

”exposure” can encode any of a number of relevant portfolio data: notional amounts, exposure at de-

fault (EAD), potential future exposure (PFE), risk adjusted exposures that use credit spread or probability

of default information etc. The main requirement is that the exposures admit a meaningful summation
into a total portfolio exposure:

ET =

n∑
i=1

Ei (1)

This requirement restricts the exposure indicators Ei to be of a numerical type instead e.g., of nominal or
ordinal type. We also require exposures to be scalar values instead of vectors.

The summation operation allows the definition of exposure weights:

wi =
Ei
ET

(2)

These weights can be interpreted as probabilities because they satisfy
n∑
i=1

wi = 1 (3)

wi ∈ [0, 1] (4)

The elementary event in this probability space is the selection at random of a small portfolio exposure dE
out of the total portfolio ET exposure and the identification of the exposure E ∈ {Ei} that it belongs
to. The sample space is composed of the collection of all exposures {Ei}, i.e., a fractional exposure is
always part of one actual exposure with probability wi. For distinct exposures Ei and Ej , the probability

that two infinitesimal exposures picked at random belong to one or the other is simply the sum of the

weights wi + wj . A related random variable that will be very useful is the index (rank-order) I of the

exposure to which a unit exposure belongs to, i.e., I ∈ [1, n]

In summary, we introduced the two random variables (E, I) which are the outcomes of sampling a small

portfolio exposure and identifying the ranking order and size of the exposure it belongs to. While fairly

straightforward, if not elementary, this recasting of portfolio weights as probabilities allows for a uniform

interpretation of the various concentration metrics and does not seem widely known. We will show that

most of the commonly used concentration indexes are indeed expectations of (E, I) under the measure

we just introduced.
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Concentration Ratio and the Cumulative Distribution Function
In order to define the standard concentration ratio CRk [1] we need to assume that the exposures Ei are

sorted by size (this requirement will also apply to the Gini index). This ordering is always possible, as we
assumed exposures have a scalar numerical type but it does require introducing more structure, namely

the probability distribution after the sorting is a discrete monotone distribution as opposed to general
discrete probability distribution. Given that the index i of the exposures does not have any other intrinsic

meaning besides the identification of exposures, we actually have no loss of generality. Despite this, it is

maybe worth noting that the sorting of exposures is not required for the HHI and Shannon index families
we discuss below.

For definiteness we fix a decreasing order of probability weight, that is

i < j =⇒ wi ≥ wj (5)

The definition of the concentration ratio of order k is simply the sum of the first k weights:

CRk =

k∑
i=1

wi (6)

The probabilistic interpretation is the likelihood that a unit exposure picked at random will belong to the

first (largest) k exposures:

CRk = Pr(E ∈ {Ek}) = Pr(I ≤ k) = CDF(k) (7)

Hence the concentration ratio is simply the CDF of the (sorted) portfolio distribution. In this probabilistic

language a concentrated portfolio (with high CRk) will have a high likelihood that a unit exposure drawn

at random will be part of a particularly large position. The range of CRk, (0 ≥ CRk ≤ 1) is simply a

property of the CDF function.

Expected Exposure and the HHI
For a given portfolio, if we sample an infinitesimal exposure dE, then the expected exposure Ē it belongs
to is given as usual by

Ē = E(E) =

n∑
i=1

wiEi = ET

n∑
i=1

w2
i . (8)

In our notation the standard Herfindahl-Hirschman Index [1] is then expressed as

HHI =

n∑
i=1

w2
i =

Ē

ET
(9)

Thus the HHI is interpreted as the ratio of the expected exposure Ē over the total portfolio expo-
sure ET . The higher the concentration as measured by the HHI, the higher the expected exposure when
drawing a unit exposure at random.

It might be useful to contrast the expected exposure as defined here with the average portfolio exposure

EA =

n∑
i=1

1

n
Ei (10)
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The latter expresses the expected exposure under a different measure, namely picking one of the Ei expo-
sures at random and not picking a unit exposure at random.
The largest value for the HHI (namely unity) is when the expected exposure coincides with the total expo-

sure, which happens when there is only one exposure with unit probability. The lowest value for the HHI

(namely 1/n) is when the expected exposure is equal to any of the equal individual exposures.

For comparability with other indices, we will use the scaled HHI index

HHI
′

=
HHI− 1

n

1− 1
n

(11)

which ranges from zero for a uniform distribution to unity for a single exposure portfolio.

Higher Moments and the Hannah-Kay index
The higher moments of the distribution of E are given by

E(Ea) =

n∑
i=1

wiE
a
i = EaT

n∑
i=1

wa+1
i (12)

The generalized Hannah Kay index is defined as [8]

HKa = (

n∑
i=1

wai )1/(1−a) (13)

For comparability we use the inverted version

HKIa = (

n∑
i=1

wai )1/(a−1)
(14)

which is written in terms of the moment as

HKIa+1 =
E(Ea)1/a

ET
(15)

which we further normalize so

HKI
′

a =
HKIa − 1

n

1− 1
n

. (16)

Obviously the HHI is the special case for a = 1.

The Gini index
The Gini index is defined as

G =
1

n

n∑
i=1

(1− 2i)wi + 1 (17)

If we define the expected exposure index

Ī = E(I) =

n∑
i=1

iwi (18)

as the expected index of a random unit exposure, then we see that in our language the Gini index is

related to Ī .
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G = 1 +
1− 2Ī

n
(19)

For uniform portfolios the expected index Ī takes its midway value (n+1)/2 and hence the Gini is zero. For

concentrated portfolios the expected index becomes very small and the Gini asymptotes to unity.

The Gini is thus an alternative ”first moment”, similar to theHHI measure we saw above, but in contrast

to the HHI, it uses only the rank order of the exposures and not the exposure values. Maybe worth
mentioning that in analogy with the Hannah-Kay family we can define various higher order moments of

the index distribution of I :

E(Ia) =

n∑
i=1

wii
a

(20)

but their advantages are not immediately obvious.

Shannon (Entropy) Index
In our notation the Shannon Index of a portfolio configuration is defined as

S = −
n∑
i=1

wi logwi (21)

The interpretation of the Shannon index is typically in terms of the entropy of the distribution. It may be
instructive to re-derive this interpretation as it sheds further light on our probabilistic setup: We divide

the total portfolio exposure ET into ν small exposures. The likelihood of having a configuration where ν1

small exposures are forming exposure E1, ν2 are forming E2, etc. up to νn exposures forming En is given

by the multinomial symbol Ων , expressing all the possible ways of arranging ν objects into n buckets.

Ων =
ν!

ν1!ν2! . . . νn!
(22)

The general definition of entropy is

Sν = − log Ων (23)

= log
ν!

ν1!ν2! . . . νn!
(24)

= log (ν!)−
n∑
i=1

log (νi!) (25)

≈ ν log ν −
n∑
i=1

νi log νi (26)

where the last approximation is valid for large numbers of ν (sufficiently sampling small exposures). Upon

substituting the portfolio weights

νi = wi ν (27)

we obtain

Sν = −ν
n∑
i=1

wi logwi (28)
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which means that the entropy per unit exposure is

S =
Sν
ν

= −
n∑
i=1

wi logwi (29)

The interpretation of the Shannon index is that it captures how far from a random (high entropy) distri-

bution is our actual portfolio. In a low entropy portfolio distribution, random small exposures will have

an unusually large chance of belonging to a few large exposures.

Rewritting the expression in terms of exposure we see that the Shannon index is linked to the expected
log-exposure

S = logET −
n∑
i=1

wi logEi = logET − E(logE) (30)

The lowest entropy (highest information) portfolio is when the expected log exposure is equal to the

logarithm of the total portfolio exposure.

For comparability with the other indexes we use a normalized entropy

S
′

= 1− S

logN
(31)

Moment Generating and Characteristic Functions
We see thus that all usual concentration indices can be interpreted as standard probabilistic expectations,

with the exception of the CRk index which captures directly the distribution weights.

This generalization leads us naturally to the moment generating functions and characteristic functions

for the exposure E and exposure index I respectively:

MGFE(t) = E(etE) =

n∑
i=1

wie
tEi (32)

CFE(t) = E(ejtE) =

n∑
i=1

wie
jtEi (33)

MGFI(t) = E(etI) =

n∑
i=1

wie
ti

(34)

CFI(t) = E(ejtI) =

n∑
i=1

wie
jti

(35)

where j is the imaginary number. Essentially all the ”concentration” content of a portfolio distribution is

captured (and can be derived) by suitable manipulations of these functions.

Concentration Index Sensitivity to Concentration
When choosing a concentration index for portfolio management applications a significant practical cri-

terion should be the sensitivity of said index to changes in concentration. This follows from the fact that
most applications involve ongoing monitoring of portfolios, setting limits and thresholds for mitigating

actions etc. Hence the ability of an index to detect and highlight concentration changes is an important

feature for risk management purposes.
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Figure 1: Illustration of a portfolio distribution with a single large exposure where n = 100 and f = 0.1

It does not seem possible to rank indexes for sensitivity to concentration in completely general terms.

Indeed each of the indexes defines an aspect of ”concentration” hence without some further structure /
preferences it would be difficult to derive a general sensitivity ranking.

Therefore we narrow the discussion (thus losing some generality) in order to evaluate the different in-

dexes in more concrete contexts. We study two specific and rather different choices of portfolio distribu-

tions. It will transpire that the results are quite robust to the choice
1

Single Large Exposure
This is an artificial portfolio construct that can capture the most extreme concentration phenomena,

namely we set a single large exposure (see Fig.1) to a fractional value f ,

w1 = f (36)

wi =
1− f
n− 1

, i ∈ [2, n] (37)

We vary the large exposure and compute all indexes as function of that parameter (see Fig.2) for n = 100

and for n = 1000 (see Fig.3). We notice the following:

1
Using an actual (empirical) distribution would not be particularly illuminating for this test, unless we have a sequence of real

portfolios that captures concentration increases in a structured manner
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Figure 2: The single large exposure varies from 1% to 100% (n = 100)

• The concentration ratio and the Gini are linear in the large exposure. For the concentration ratio this
is because it is linear, being simply the sum of large exposures. For the Gini index this is because it

only depends on the weight of the largest exposure.

• The other indexes are sub-linear (less sensitive) with the HHI being the least sensitive

• The broad ordering of indexes versus sensitivity does not depend critically on the size of the port-
folio, but the details are affected. For example the Shannon index is more sensitive than then

third-order Hannah-Kay index for larger portfolios

Power Law Distribution
Turning into a less extreme example of portfolio concentration, we imagine that there is an underlying

portfolio generating process and hence that the exposures in the portfolio follow a particular law. We con-
sider the case where the exposure distribution follows Zipf ’s law, namely distributed as a power law. This
distribution is interesting as it can generate large exposure concentrations,is conveniently parametrized

by a single power law index a and the fact that power laws are typical in many economic phenomena.

Specifically we assume that

wi =
1

Hn,a

1

ia
(38)
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Figure 3: The single large exposure varies from 1% to 100% (n = 1000)

whereHn,a is the generalized harmonic number

Hn,a =

n∑
i=1

1

ia
(39)

With this simplification, the propensity of a portfolio to have proportionally more large exposures is cap-

tured by the single power law index a. Examples of the distribution for two indicative values of a are given

in Fig.4. Note that the plot is in log-log scale to bring out the power law behavior.

In the plot (see Fig.5) we illustrate the variation of the various indexes as the parameter a of the distribu-

tion changes. When focusing on the slope of the curves we note the following:

• The most sensitive index (highest slope) is the CR, followed by the Gini and Shannon indexes

• The HHI is again the least sensitive

• The HK/HHI family has a brief region around low concentration where sensitivity increases (but
starting from a lower baseline value)



OpenRisk

Revisiting simple concentration indexes 14

100 101 10210-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
x
p
o
su

re
 S

iz
e

a=1.5

Portfolio Distribution (log-log)

100 101 102

Exposure Index

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
x
p
o
su

re
 S

iz
e

a=3

Figure 4: Zipf (power law) portfolio distribution for two values of a (n = 100).
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Figure 5: The power law parameter a varies between 1 and 5 (n = 100)



Open Source Implementation
A software implementation and related documentation of the metrics developed in this paper are avail-

able and released by OpenRisk under Open Source and Creative Commons licenses respectively.

Requirements
To use the implementation you will need

• A functioning python installation on any platform (available for all major platforms, see www.python.
org)

• The following additional python libraries: {numpy, scipy}. Check the respective websites for instal-
lation instructions (www.numpy.org, www.scipy.org)

• The OpenRisk library from our Github repository (www.github.com/open-risk)

• Portfolio data in a simple ascii file

Documentation of available functions
Documentation for the available functions is provided in the OpenRisk Manual:

• The Concentration Ratio

• The HHI index

• The Gini index

• The Shannon index

• The Hannah-Kay index

Code Structure and Usage
The library consists of a single python module that can be imported and used in other projects. Consult

the Readme for usage and testing instructions
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