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1 SUMMARY

In this second Open Risk White Paper on Connecting the Dots we examine measures of concentration,

diversity, inequality and sparsity in the context of economic systems represented as network (graph)

structures. We adopt a stylized description of economies as property graphs and illustrate how relevant

concepts can represented in this language. We explore in some detail data types representing economic

network data and their statistical nature which is critical in their use in concentration analysis. We proceed

to recast various known indexes drawn from distinct disciplines in a unified computational context.

1.1 Structure of the white paper

• The introduction places the white paper in the context of contemporary academic research and in-

formation management technologies and motivates the need for an integrated approach that enables

taping into these distinct knowledge domains.

• The section on network data summarizes the technical machinery used in representing economic

networks as graphs. The core concept of a property graph and the data structures it supports

are described in the detail required for discussing concentrations and constructing the associated

measures.

• The section on index construction mechanics discusses the main choices and calculation steps

required to transform property graph data sets into concentration measurements.

• Finally, the index catalog section enumerates a large number of the most commonly used indexes,

categorized according to their broad nature.

1.2 Further Resources

• The concentrationMetrics is an open source framework written in Python that allows the easy

calculation of many of the measures discussed in this paper.

• The Open Risk Manual is an open online repository of information for risk management developed

and maintained by Open Risk. Various concentration risk concepts mentioned in this White Paper

are further documentd and explained using dedicatedOpen Risk Manual entries.

• The Open Risk Academy offers a range of online courses around risk and portfolio management,

which utilize the latest in interactive eLearning tools, including a dedicated category on Credit

Concentration Courses and Concentration Measurement Using Python

• More content: Open Risk White Papers and Open Risk Blog

1.3 About Open Risk

Open Risk is an independent provider of training and risk analysis tools to the broader financial services

community. Our mission is captured by the motto: The open future of risk management. Learn more

about our mission and projects at: www.openriskmanagement.com

Copyright 2021, Open Risk. All rights reserved.

https://github.com/open-risk/concentrationMetrics
https://www.openriskmanual.org/wiki
https://www.openriskacademy.com/
https://www.openriskacademy.com/course/index.php?categoryid=24
https://www.openriskacademy.com/course/index.php?categoryid=24
https://www.openriskacademy.com/course/view.php?id=13
https://www.openriskmanagement.com/open-risk-white-papers/
https://www.openriskmanagement.com/blog/
www.openriskmanagement.com
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2 Introduction

2.1 Context

Economic networks of interconnected agents engaging in exchange of goods, services and contracts of

various forms are the defining attribute of human economies. While this is intuitively obvious, the quan-

tification and analysis of economic networks has not played an important role in the historical development

of economic and financial theory and practice. Yet in recent times, supported by developments in infor-

mation technology both academics and practitioners connect the dots by analyzing economic phenomena

making use of graph theory and network analysis. Such developments help create more detailed under-

standing of the structures and interactions between economic agents, ultimately guiding towards better

policies and risk management.

Examples of economic networks already studied include for example the system of interconnected fi-

nancial institutions. Potentially adverse linkages were an issue that rose to prominence after the financial

crisis of 2008 (e.g., [1],[2] and a recent review in [3]).

In broader economic context, networks show up e.g. in core/periphery networks ([4]), the structure of

multinational affiliate networks ([5]) and shadow banking ([6]). The ambition to understand the economy

as a living network provides important motivation for collecting relevant statistics ([7]) and underpins

modern flow-of-funds analysis ([8]). Empirical analysis is crucial, for example, to understand how in-

terlinked households and non-financial firms affect borrower delinquencies and defaults which ultimately

affects the health of the entire system. ([9], [10]). The explicit modeling of credit contracts as networks,

in particular involving the banking system is now a fruitful line of inquiry ([11], [12], [13]).

In many disciplines outside finance and economics there are also growing bodies of work that make use

of generalized graph structures as representations of complex networks. These are going under a variety

of names: multilayer networks, multiplex networks or multidimensional graphs. Good overviews (and links

to open source software that enables working with such structures) are given in ([14],[15]).

Turning to the focus of this paper, concentration measurement is one of the most important and frequent

risk management analyses and is deeply linked to measurement concepts such as quantifying inequality,

sparsity or diversity. Thinking and developing suitable such measures has a long historical tradition:

”It is generally agreed that, other things being equal, a considerable reduction in the inequality

of incomes found in most modern communities would be desirable. But it is not generally

agreed how this inequality should be measured”.

A hundred years after the above quote, which comes from the seminal Dalton paper [16] on measuring

inequality it is not clear if we are closer to a clear answer. There is an enormous literature on constructing

and selecting appropriate methods for measuring inequality through indexes. In parallel, there is large

and ever growing set of proposals and approaches covering concentration, diversity, sparsity or clustering

as those phenomena are studied in other disciplines. Many methods have been introduced and used

extensively within their respective domains (See Box 1 for a summary of the main disciplines).

In a previous paper [17] we reviewed the definitions of widely used concentration metrics such as the

concentration ratio, the HHI index and the Gini and clarified their meaning and relationships in a proba-

bilistic context. This analytic framework helped clarify the apparent arbitrariness of simple concentration

indexes and brings to the fore underlying unifying concepts behind these metrics, thereby enabling their

more informed use in portfolio and risk management applications. Expanding the scope of concentration
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Banks and Sovereigns

CB

Bank

Bank

Bank

Corporates

Households

Figure 1: A multi-layer network representation of a stylized economy. Nodes are legal entities (real persons,

firms, banks etc). Connections are indicating economic transactions or contractual relations.

risk analysis we ask the question: How do the objectives and tools of concentration risk analysis translate

in the context of economic networks?

This question frames the main discussion topic of this white paper. To explore the question we continue

developing the quantitative framework first introduced in [18]). The approach stylizes the description of

economic networks as contractual relationships between agents described as property graph (Fig. 2.1).

The term ”property graph” is used primarily in the context of modern database systems ([19], [20]) and

places an emphasis on the storage of information (versus mathematical graph properties and algorithms).

In the next section we will summarize the general concepts and notation that are part of the property

graph representation of economic networks1 but for brevity only do so as required for discussing concen-

tration metrics. A more detailed discussion that focuses on detailed descriptions of contracts and balance

sheets of economic agents is given in [18]).

2.2 Defining concentration measurement

Simply put, what underlies concentration or diversity or sparsity or inequality measurement is the assess-

ment of the degree to which a particular property or properties are distributed across an extended system.

For the concept of distribution to be important the system we study must contain multiple instances of

similar components (for example a large number of economic actors belonging to the same category). It

is implied that (at least in principle) a diverse set of possible distribution profiles are possible and the

system studied is but one configuration out of many.

1We will use the term graph and network as synonymous
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A general quantification concept that is a common building block is statistical dispersion. Indeed

statistical moments such as variance or kurtosis are frequently used in concentration analysis. From

physics and computer science one can also import concepts such as entropy (measuring the degree of

system order or disorder).

The use of the word measurement suggests that the objective of concentration measurement

is to focus preferentially on quantitative information and tools. Qualitative considerations

creating concentration might be very important, especially for systems that are not adequately

studied and quantified. We assume here that the concentration issues drawing our attention

have had at least a preliminary expression in quantitative form.

Concentration is most simply expressed as a single number (outcome), with a defined range and (ideally)

a set of indicative threshold values the define concentration levels. Such a number is usually called an

index, measure or metric. Quite frequently indexes bear the name of the first authors proposing them in

academic literature.

Concentration indexes are, quite generally, mathematical maps (functions) from some multivariate sta-

tistical (probability) distribution of observed values into a single real number (the index). They are thus

essentially summarizing the content of a very complex object (that is a potentially higher dimensional)

to a manageable (communicable) scalar value.

As mentioned already, concentration indexes can be considered as a type of summary statistic or descrip-

tive statistic and indeed several approaches are based on dispersion measures (second or higher moments)

of the distributions. In more formal treatments the different families of indexes might be segmented ac-

cording to which axioms they are required to satisfy. There are many dozens of indexes proposed over the

years and there are many more minor variations.

Despite commonalities in the four domains mentioned (concentration, diversity, inequality, sparsity)

and associated measurement tasks, there are fairly significant differences in motivation, intended use and

typical datasets for each domain. There is also great diversity in terminology and conventions which may

obscure otherwise similar concepts. For simplicity we will use the term ”concentration index” as an overall

category.

There are in particular possible axioms (requirements) of how a concentration measure should behave

(e.g. when combining two systems) that are relevant in some domain but not useful in others. Thus the

requirements and constraints for concentration measurement of economic network data depend on the

context and need not be universal.
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Box 1. The many guises of concentration measurement

The concept of concentration measurement is important both in academic research and in

practical applications in a number of diverse disciplines. The specific nature of each field leads

to important field-specific adaptations:

• Inequality Measures: Inequality indexes are constructed and studied in sociology, eco-

nomics and policy work. This is maybe the most developed domain from a theory per-

spective as it incorporates utility preferences and selects suitable functional forms on the

basis of rigorous axiomatic frameworks. On the other hand the focus is on important but

rather specific numerical variables such as income and wealth distributions.

• Concentration Risk Measures: Concentration enters in various areas of finance and eco-

nomics when assessing industial, market share concentration, market risk or credit port-

folio risk concentration. A wide range of approaches is employed in practice: from simple

numerical measures to sophisticated simulation based risk measures that are only com-

putable through Monte Carlo simulations. This integration of concentration metrics with

modeled risk measures is rather unique in this domain.

• Sparsity Measures: In signal processing sparsity means that a small number of (spectral)

coefficients contains a large proportion of the energy. The concept of sparsity is very

flexible and is also applicable in machine learning. This is possibly the most context-

agnostic application domain, focusing on an information theoretic assessment without

additional constraints or insights.

• Diversity Measures: These are common tools in ecology when assessing biodiversity. Di-

versity indexes focus on species abundances (thus mainly categorical data) instead of

numerical data that are more common in inequality and concentration analysis. A unique

aspect of biodiversity measures are multi-scale considerations.

• Spatial Concentration: In various domains utilizing geospatial data there is a need for

indexes that express spatial concentration. Here the concentration measurement is intrin-

sically multi-dimensional. This introduces an expanded toolkit which aims among others

to identify spatially close entities.

• Clustering and Centrality Measures: In network theory a distinct category of metrics

aims to characterise the clustering of network connections in a graph. This domain too,

requires highly specialized tools to extract usable information from graph structures.

Practically all of the above can be repurposed in the context of economic networks, providing

a rich tapestry form characterising the distribution of properties of such networks.
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3 Economic Network Data

In this section we will summarize a technical machinery (data structures) that can be used for representing

economic networks. The core concept we will use is that of a property graph. Before we discuss it let let

us briefly revisit the simple mathematical graph.

The classic (simple, undirected) graph is an ordered pair G = (V,E) comprising of:

• V , a set of vertexes (also called nodes)

• E ⊆ {(x, y)|(x, y) ∈ V 2 ∧ x 6= y}, a set of edges (also called links), which are unordered pairs of

vertexes (i.e., an edge is associated with two distinct vertexes).

In our context, nodes will typically be the economic entities (for example persons or legal entities) that

we want to model (represent). Edges will be a natural tool to express economic relationships between

those entities. Such relationships can be any concrete economic fact: transactions, contracts, shareholding

interests etc.

As an example, in the abstract graph below four nodes are depicted (A, B, C, D). There are also some

links between them (some nodes are linked in multiple ways).

Example of a simple graph

A

B

C

D

The classic graph as introduced above is an expressive and flexible mathematical tool. For example one

can prove powerful theorems about graph properties that are generally valid across any network. But

in terms of data modeling tools it has obvious limitations that must be addressed for many practical

applications. E.g., what is the meaning of nodes and links? It could be anything, e.g. who-knows-whom,

who transacts with whom etc. but in most practical situations additional information is required.

Historically the next level of fidelity in graph theory has been the introduction of valued graphs. A

valued graph is a graph where a real number (value) is assigned to each edge. This generalization opens

up additional representation possibilities. The edge value might be e.g., the credit exposure of one entity

to an other, yet this is also far from sufficient. In addition in many concrete analyses one needs additional

amounts of data to describe nodes (e.g. size, type etc.)
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3.1 Property Graphs

In order to capture a reasonably realistic amount of economic network information we need to expand the

mathematical structure of the valued graph in various non-trivial ways:

• By allowing nodes and edges of different types (e.g. individuals versus companies or companies in

different sectors)

• By allowing a variety of qualitative and/or quantitative information to be associated with nodes or

edges (e.g. assets, contracts, company statuses etc)

• By capturing the temporal dimension, i.e., the evolution of an economic graph in time.

Formally property graphs are directed, labeled and attributed multi-graphs. This means roughly the

following:

• The attributed adjective means that both nodes and edges carry associated information (attributes

or properties) that can be significantly more detailed than the simple existence of a node or a relation

between nodes.

• The nature of the attributes (e.g. the data type) is in principle quite flexible including both numerical

and categorical types.

• The multi-graph adjective means that there are multiple possible edges between nodes expressing

different types of relationships. The number of possible edges between nodes is not constrained.

• The labeled adjective means that both nodes and edges are individually identifiable and may belong

to distinct types.

In the visual example below we illustrate the significant additional richness of a property graph. The

graph focuses on the economic neighborhood of a single household (a family) as an economic entity. A

variety of economic (e.g contractual) relations with other agents are depicted as edges of different types

(exchange of money or goods, cash flows linked to agreements and legal contracts etc). The graph also

illustrates the concept of node properties (in this case just two elements: money and assets). Edges may

have arbitrary properties too, capturing the quantitative and qualitative elements of the network relations.

The total network is composed of an number of distinct types. The network may be completely abstract

(focusing on economic relations) but it may also include spatial information (e.g. the location of a

particular node) that allows mapping the structure onto a geographical map. Finally all nodes and edge

properties may have temporal tags (timestamps) that place the network in temporal continuum.
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Mathematically a property graph is defined as follows2:

• V is a set (collection) of network nodes. It is decomposed as V = V 1 ∪ V 2 · · · ∪ V p, where p is the

total number of different node types.

• x̄p = {x1, x2, . . . , xn(p)} is a set of n node attributes. Different node types will in general have

different number n(p) of attributes. We will suppress this general notation for simplicity.

• Collecting the node properties for all similar nodes of type p creates a data frame xpn that is, a

n(p)×N(p) matrix of values (n(p) columns, N(p) rows) where N(p) is equal to the number of nodes

of a given type.

• E ⊆ V × V is a set of edges connecting different nodes. The set of edges E is decomposed as

E = E1 ∪E2 · · · ∪Eq, where q is the total number of different edge types. Edge types may be node

specific (that is specific to a combination of node types) or universal (able to connect all nodes).

2This a simplified summary that is adequate for our current purposes. It is worth mentioning that property graphs are

both mathematical structures and realizations of concrete graph databases. In this white paper we are mostly interested in

the structure as a data container
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• A set of adjacency matrices Aq (one for each edge type). Adjacency matrices are binary matrices

consisting entirely of (0, 1) values. The values Aqij indicate that a connection of type q exists between

nodes i and j but do not provide other qualitative or quantitative information. This role is played

by edge attributes.

• ȳq = {y1, y2, . . . , ym(q)} is a set of m(q) edge attributes of edges of type q. Different edge type q will

in general have different number of attributes m(q).

• The data frame yqm is a m(q) ×M(q) matrix of values (m(q) columns, M(q) rows) where M(q) is

equal to the total number of edges (of a given type) that appear in a network.

Property graphs are very general structures including the simpler mathematical graph families as special

cases. E.g. a weighted or valued graph is one where the edge properties are assigned a single scalar value.

We can now state schematically that concentration indexes will (very generally) be maps from

the space (xpn,y
q
m, A

q) of node and edge properties and adjacency structures to real numbers,

in short: I = F (x, y,A).

3.1.1 Economic activity representations

The precise nature of node and edge attributes used to represent economic networks is open ended and left

to the analyst to design as required. The structure enables abstractions that represent many of the diverse

forms of human economic activity, different types of transactions, contracts, accounting approaches etc.

In general economic agents might be mapped into nodes but not every node need be an economic agent).

Other important entities or concepts may also be usefully considered as a network node - ultimately nodes

are book-keeping devices. For example an asset may be considered a node property or a standalone node

with its own attributes depending on the fidelity required.

Transactions, contracts or other relations between nodes will be mapped into edges (links). More

concretely for our current purposes of integrating the diverse range of concentration indexes we will

idealize the following:

1. Individual economic agents, both physical persons and legal only entities will be thought as nodes

of the network.

2. Nodes have individual properties, from within a vast variety of types, which are associated with each

agent (node). They represent for example ownership of assets including cash / money.

3. Agents may engage in exchanges (property transfers, service provision etc.) that are abstracted as

transactions.

4. Agents may also enter into contracts (that basically govern future transactions) and may have finite

duration (such as debt) or perpetual nature (such as equity).

We will focus on concentration measurement operations that exclusively rely the above data, that is,

we assume that the economic network expressed as property graph contains all the information of interest

in the set (xpn,y
q
m, A

q). It is, though, conceivable and actually quite frequent, that values of interest are

not primary quantities (directly obtained from measured data) but are derived by processing the above
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structure. We will see several important examples in the sequel. To avoid overburdening the notation

such derived data will be considered part of an expanded graph that appends any further derived node or

edge attributes to the existing ones.

3.1.2 Contracts

As a concrete and important example we discuss the representation of financial contracts. Contracts are

legal constructs that are widely used in modern economies and govern the exchange of various assets and

services. Contracts can be seen as collections (bundles) of forward transactions sets. We have already

seen transactions as exchanges of cash, real assets, services, other contracts etc. Contracts are term-sheets

spelling out a sequence of such future events.3 There is an enormous variety of contracts and many are

relevant in the context of capturing node dependencies in an economic network.

Simplified representations of contracts are possible and may be adequate for various purposes. In the

simplest case contract details can be captured as the numerical attributes of edges (e.g. including a list

of scheduled cash flows and payment dates), with further logic of the contract encoded implicitly in the

contract type.4

A contract can thus be represented as a relation between two nodes that encodes scheduled future

transactions (exchanges) between the two nodes. An important aspect of contracts is that they have

duration (maturity), which may in some special cases be infinite (perpetual). The contractual maturity

is a future time tM > t when the final scheduled transaction must take place. A contract might entail a

transfer from entity i to entity j of an asset ak (can be a real asset, cash, e-money, services or anything else

that is part of the economy) at contract inception T tij(ak). In subsequent times it may stipulate transfer

from entity j to entity i (hence reverse) of other assets al (a real asset, cash, e-money, services) T tMji (al).

The final scheduled forward transaction specified in a contract determines its maturity.

Let us mention that the above conceptual constructs are but a convenient approximation. Besides the

caveat of qualitative considerations that may not at all be amenable to quantitative measurement, other

economic relations may need more elaborate structures to represent economies and their interactions more

faithfully. For example even a simple loan guarantee is a tri-partite relation that links a lender, a borrower

and a guarantor in a triangle of specific roles. While some aspects of that relation can be modeled using

adjacency matrices the intrinsic logic is more complex.

3.2 Network Data Property Classifications

Classic indexes focus on the dispersion of property values along a single, carefully chosen, dimension

(which may be associated with a node or link). For example income inequality could be represented as

the distribution of an edge property, where the edge represents the salary value associated with a job

contract between an individual node and a corporate node. A more comprehensive representation of

income might aggregate multiple sources of income represented by other types of edges. To enable using

the (in-principle) larger available dataset of an economic network we need to take a step back and explore

3We assume here that the entire economic substance of a contact is captured explicitly. In practice such accuracy is only

achievable for very restricted sets of monetary exchanges possibly contingent on carefully defined (and legally enforceable)

events
4A slightly more elaborate specification that still permits implementation in a property graph would involve including

lambda functions as edge attributes. This is a simple means to encode conditionality (e.g. introduce payments that subject

to thresholds and triggers) ([21]).
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the nature of available. We turn now on exploring in more detail the collection of node, edge attributes

and adjacency matrices (xpn,y
q
m, A

q) and more specifically their classification and statistical nature.5

As mentioned already, a fundamental assumption is that any particular economic network expressed as

a property graph is but a representative (sample) from a large configuration space. Some measures take

this approach literally and associate indexes with statistical tests of concentration (or rather lack thereof).

We will not in general try to document this view. Another important consideration: Which network

elements are considered fixed (constrained) and which are assumed as variable within the permissible

graph configuration space is very important for normalizing measurement outcomes. We will leave it also

out of scope in our survey as it is quite context dependent.

We turn first to classifying node and edge properties as captured by the dataframes (xpn,y
q
m). In a

mathematical sense concentration indexes reflect the structure and properties of the distributions they

attempt to summarize. The two important aspects that play a role in this context are:

• The dimensionality of the total distribution, namely the shape of the (n,m) tuple of node and edge

properties.

• The nature (data type) and range of the random variables making up that distribution, namely

whether they are numerical, continuous, categorical or discrete.

We proceed to explore this segmentation in more detail:

3.2.1 Qualitative versus Quantitative Data

A first important distinction is between qualitative and quantitative data. This juxtaposition is common

in financial / risk management practice. Quantitative variables are generally linked to verifiable and

numerical measurements (e.g., observed market prices, amounts stated in contracts, numerical figures

from audited accounts etc.). Qualitative variables may instead not be directly attributable or linked to

concrete empirical observations or the process of their construction is not mechanical / reproducible (e.g.

it is the outcome of an expert panel scoring session).

Qualitative does not necessarily mean subjective (even more so, less important). Qualitative infor-

mation such as the text-based description of system properties may be both factual and invaluable for

understanding the actual economic network state. Yet such information cannot be used directly in quan-

titative concentration measurement. Some qualitative information may be convertible into the ordinal or

categorical variety. E.g. the legal status of a contract with a counterparty may turn from a qualitative

variable that is captured e.g., in a paper document into a quantitative state variable in accordance with a

predefined categorical scale (performing, defaulted etc.). This conversion process may involve procedures

or algorithms of a complexity that excludes it from the core concentration measurement process.

An indicative list of data types that are excluded from further consideration in this paper:

• Any free form text (sentences)

• Strings (words) - unless they are part of a strictly controlled vocabulary (See Categorical Data)

• Binary data (sometimes called blobs or binary large objects)

5While the adjacency matrices Aq are obviously crucial for describing complex networks and their concentrations, from

a data perspective they are form through pure binary data hence no further classification is required.
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• In general any composite objects (e.g, tree structures, that form from combinations of more primitive

types

3.2.2 Numerical versus Categorical Data

A most important segmentation for our purposes is the split between numerical variables (integers, floating

point numbers etc) and categorical variables (e.g. a variables that take values from a choice list):

1. Numerical Variables are quantitative values of various elementary numerical types that are dis-

tributed over a possibly continuous range in one or more dimensions. More complex ranges are

definitely possible (half plane / positive only values, some combination of continuous and discrete

values etc.) Numerical (including spatio-temporal) properties give rise to empirical distribution

functions (one for each node or edge property). Spatial variables are intrinsically two or three

dimensional hence the empirical distribution function will typically be higher dimensional.

2. Discrete Categorical or Ordinal Variables that take ordered or unordered values from a finite and

discrete set. While such variables can use any symbol to enumerate the set elements, by convention

we will use integers. Ordinal and categorical variables give rise to categorical distribution functions

(the counts of the frequency of occurrence of each possible category value).

Classic concentration measurement tools are generally adapted to the above numerical / categorical

split. Some indexes may be applicable to both or be more meaningful for one but not both types of

variables. Diversity indexes work in general with categorical variables. On the other hand inequality and

concentration risk measurement is in general using numerical variables.

3.2.3 Extensive versus Intensive Variables

In analogy with physical systems, properties of economic networks can be categorized as being either

intensive or extensive. This characteristic segments variables according to how a quantity changes when

the size (or extent) of the system changes. An intensive quantity is one whose magnitude is independent

of the size of the system. An extensive quantity is one whose magnitude is additive as subsystems are

combined. A natural indicator of size is the number of nodes6 and the intensive or extensive property can

thus be expressed in terms of how the variable scales with N .

In general, categorical variables are intensive quantities that do not scale with the size of the system.

Some (but by no means all) numerical variables might be extensive. Examples of intensive properties: An

interest rate is a numerical property that can be averaged across contracts but the summation of interest

rates is not meaningful per se. Prices are also intensive properties. The sum of prices observed in a

market is meaningless but an average price is definitely a useful indicator. Data properties that are rates

or ratios in nature are likely intensive. Geolocations are further examples of numerical properties that

can be averaged (e.g. to identify the clustering of some business activity) but for which the summation

or aggregation operation is not informative.

Examples of extensive properties are abundant as well: Any quantities (stocks) of assets owned by

economic nodes, notional amounts of contracts associated with edges, cash flow figures involved in trans-

actions between nodes etc. all are examples of extensive properties. Summing up these amounts provides

6the number of edges is generally coupled to the number of nodes
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a meaningful aggregate that describes the entire system. Extensive properties are positive numbers and

can meaningfully be summed across the system. That sum scales linearly with the number of nodes or

edges. As mentioned already, an important consideration in the precise form of concentration indexes is

to control how such scaling is reflected in the index.

3.2.4 The special case of spatio-temporal variables

Spatiotemporal variables deserve a special mention. Conceptually they can be considered a subset of

numerical variables. For example: a timestamp (or a date) is a numerical value conforming to some date

format / scheme.

Similarly, spatial (geometric) data may be a tuple of coordinates or a more complex composite of

numerical variables expressing, e.g. the latitude and longitude coordinates of the boundaries of a region.

The universal and unambiguous meaning of such data within a temporal / spatial context sets them apart

from other numerical variables. In practice they also have dedicate set of tools for analysis. To simplify

and unify the discussion we will assume that any spatial data properties associated with nodes or edges

is also represented as a collection of columns vectors in our set of properties (xpn,y
q
m).

3.2.5 Stock versus Flow Variables

Economic networks are rather dynamic (changing in time). Every single transaction in an economy is

in principle a graph event, that is, an occurrence that modifies the graph, even if in a small way. At a

more aggregated level as well, dynamics and evolution are common features: Nodes and edges appear

and disappear constantly (new generations of individuals, new company formation, new trade relations,

adjusted ownership of assets, projects succeeding or failing, maturing contracts etc).

In economic literature such dynamics is conventionally phrased in the language of stocks and flows. Stock

variables describe the economic system state at some point in time whereas flows are the corresponding

changes to the state (they are the first time derivative). Generally, stock variables at different time

instances are connected to their corresponding flows via a difference equation of the following general

form7

Stk = St−1k + F tk , (1)

where k denotes time instances. The above rather generic equation suggests stocks and flow variables

would be typically be governing the evolution of numerical properties and would be of extensive type.

Indeed the addition of an incremental amount (flow) to a stock must evidently be meaningful. But tem-

poral different equations will also apply to system-wide (intensive) properties as well. E.g. a central bank

policy rate change will get reflected on many contractual rates characterizing distributed edge properties

(contracts) across the economic system.

3.3 Old measures in new clothes

We now proceed to list standard considerations from economics and finance and sketch how they might

get translated in our graph based computational framework.

7We adopt a discrete time framework
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3.3.1 Example: Income and Wealth Inequality

Income and wealth inequality are considered in the context of economic inequality which can be defined

/ studied at various levels of aggregation. Here we illustrate how the corresponding quantitative analysis

can be rephrased in an economic network language in a hypothetical quantification exercise that uses

detailed network data:

• Nodes of type P = V 1 represent individuals (physical persons) as economic agents

• A specific node property g capturing owned wealth (the value of real assets)

• Nodes C = V 2 representing corporate nodes

• A node property cj representing total owned assets by a corporate node j

• Edge relations captured by an adjacency matrix A1 representing labor contracts between individuals

and corporate nodes

• An edge property Iij that captures income as the form e.g. of monthly or annual salary remitted

from corporate entity i to individual person j.

• Edge relations A2
2 representing shareholding contracts between individuals and corporate nodes

• An edge property S that represents the share of corporate node assets owned by an individual

With the above setup, the computation of an inequality index based on income and/or wealth is reduced

to aggregating node and edge properties across the network and examining the resulting value distribution.

For example the wealth gi of node i could be computed as the following aggregation8

gi = V (

C∑
j=1

A1
ijIij) +

C∑
j=1

A2
ijSijcj (2)

where C is the number of corporate nodes, and V is a capitalization function applied to the salary

figures.

3.3.2 Example: Credit Risk ”Name” Concentrations

Classic concentration risk analyses like name sector, geographical or financial product concentration have

been traditionally based on computing concentration indexes.

Name concentration is one of the well known types of credit risk concentration. It rests on analyzing

various aspects of the distribution of exposures (contractual amounts subject to default risk) to individual

companies (”names”. The classic approach will use as a starting point a table of exposures and an

associated graph to visualize the distribution, identify the top exposures or compute a suitable index.

How would the same be represented in a ”network data” approach?

In a network context a portfolio concentration is represented as a simple star graph. The focus is on

a central node that is a portfolio holding node (e.g. a bank) entering into contracts with clients. Those

contracts are represented as edges, emanating from the bank node and reaching the client node. The

classic concentration of a loan book is thus obtained by applying an index to the distribution of an edge

attribute (for example an attribute that could be labeled ”exposure” or ”contract nominal value”).

8Ignoring corporate node liabilities



17
Open Risk

Concentration, diversity, inequality and sparsity in economic networks

Bank

A Star Network (Bank to Borrowers) Edges unrolled into a Histogram

Visual illustration of a classic concentration analysis that is based on a portfolio picture. At the center

of the graph is a bank node and the network is formed by its financial (credit contracts to a collection of

other legal entities depicted as a cloud around the central node. Further relationships of these nodes with

each other (or other economic agents) are not captured in this picture.

The width of the arrows pointing to borrower nodes is meant to indicate the nominal value of the

loan contract. Hence in this case name concentration is the prevalence of credit contracts with large

nominal amounts with particular nodes in the network. It is clear that in this case the adjacency matrix

is not particularly informative. Yet focusing on what we actually by a corporate node and ”exposure” to

a counterparty immediately suggests that important aspects of network structure is never far from the

surface.
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A network graph illustrating the corporate structure of a major corporate group (Thomas Cook) which

filed for bankruptcy in 2019. The different boxes are all the legal entities (companies or special purpose

vehicles) that are economically closely related to the business group. The central (orange) node might be

what one would term the principal counterparty node. Around it, the graph illustrates a large number

of closely associated corporate entities that are linked with various explicit or implicit contractual and

economic relations. Aggregating the total or one obligor exposure to such a cluster or entities can be quite

an intricate exercise.

3.3.3 Example: Geographical Risk Concentrations

Geographical concentration aims to capture any propensity of exposure to entities that operate economi-

cally within a particular territory / jurisdiction. Traditional analysis might drastically simplify the picture

by assigning nodes to predefined country or regional categories. In an economic network picture geography

enters as spatial data characterizing node activities.

Business sector concentration is another classic analysis that can substantially improved in an economic

network context. Sector concentration focuses on identifying corporate nodes of a particular industrial

type or business model. In turn the risk of such node sub-categories is natively analysed in their own

economic network context (e.g., the collection of suppliers, employees and customers).

Finally, financial product concentration is the prevalence of contracts (hence edge relations) with par-

ticular features (e.g. certain types of optionality leading to prepayment risk or similar dependence on

reference rates leading to joint payment shocks in the case of large interest rate movement).

3.3.4 Example: Market Share Concentration

Market concentration concerns the relative market share of a firm. Depending on the context it might

be e.g., based on sales figures or the total assets of the firm. In a standard approach one might collect

already aggregated sales data as reported e.g. in the statement of income account of the corporate entity.
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Figure 2: A hypothetical economic network illustrating a number of different data dimensions and how

those can be used to map concentration. Spatial coordinates help locate the nodes on a map. Node

type and properties can be indicated as node size and color. Edge type and properties are indicated by

edge color. Obviously nodes and edges can have many more associated data points than can be legibly

visualized. Spatial concentration indexes can in turn be derived on the basis of the distribution of nodes

on the map
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How can we derive market share from a network representation? This is an example where a procedure

might be in-principle possible but not available in practice due to data limitations.

Let us assume that the business model involves manufacturing and sales of gadgets. To represent sales

transactions within the graph framework we image these as instant actions expressed as edge relations

between buyer and seller. A snapshot graph view will in general not be representative of the network

structure. The additional element required to achieve a better measure is the temporal aggregation of

network data. Schematically the aggregate sales Si over a period for entity i can be expressed as :

Si =

T∑
k=1

N∑
j=1

Akijy
k
ij (3)

where k is an index of the number of temporal snapshots where Akij is the adjacency matrix linking

seller i and buyer j and ykij is the monetary value of that sale transaction.

3.4 Is it a node or an edge concentration?

As discussed in [18], contractual relationships that are naturally seen as edge properties may actually get

mapped into node properties in the context of balance sheet accounting. In a balance sheet representation

the edge relations of the reporting node get aggregated into node properties. We saw already two examples

of this transformation: the balance sheet representation of a bank node converting contracts from edges to

balance sheet items and the income statement of a corporate converting sales transactions into aggregated

income streams.

4 Index Construction Mechanics

As mentioned indexes are maps from the space (xpn,y
q
m, A

q) to the real numbers (schematically the value of

the index is I = F (x, y,A)). The choice of the functional form F is essentially free (which is not particularly

helpful). Useful suggestions generally constrain this functional space through various specifications. The

following are three of the most important categories of considerations

• identifying the set of readily available input data. While data collection has been famously much

expanded with the advance of digitization, detailed, low-level network data are still the exception

rather than the rule

• specifying a tractable set of operations on the network data. Tractability is also a moving target and

context dependent. It may refer to computational constraints such as performance or algorithmic

complexity but also to issues such as transparency and explainability

• specifying a set of desirable axioms / requirements that the index must satisfy. This will typically

be driven by the domain where the index is primarily used

4.1 Data Objects

Let us summarize and visualize the discussion so far before we embark on discussing the mechanics of

constructing indexes.
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4.1.1 Node and Edge Dataframes

Node and edge properties data are represented as a collection of tables. For example:

Node Float Integer Categorical Timestamp Latitude Longitude

1 123.3 10 2 1623577438 31.9 -4.8

2 4.21 1 0 2743821235 41.2 2.6

. . . 34.1 3 1 2123527438 11.4 6.2

N 10.2 15 2 1623577438 24.5 40.1

The above table collecting a set of network node data illustrates the distribution of numerical, categorical

and spatio-temporal properties for a certain type of node. All nodes of same type have (in principle) the

same number of attributes9. After standardization, all datasets have a representation in terms of digits

(including any categorical and temporal data).

An edge collection will have in principle a very similar data frame as shown below. The main differences

are that i) the data frame row index associated with and edge will range over M = N2 (the product of

relevant node counts) and ii) data properties that make sense for edges might be quite different from those

of nodes. For example spatial data associated with nodes might be spatial points. Instead, an edge might

future an array of data points, expressing e.g., a way or route relation between nodes.

Edge Float Integer Categorical Timestamp Start End

1 123.3 10 2 1623577438 (31.9, 1.2) (-4.8, 10.2)

2 4.21 1 0 2743821235 (41.2, 4.5) (2.6, 0.9)

. . . 34.1 3 1 2123527438 (11.4, 5.4) (6.2, 20.1)

M 10.2 15 2 1623577438 (24.5, 3.5) (40.1, 1.2)

4.1.2 Adjacency Data

The third set of data objects after node and edge dataframes are the adjacency matrices representing

relations of various types. In standard graphs the relevant object is a single adjacency matrix, a square

matrix Aij with elements either zero or one, representing whether nodes (i, j) are connected.

In most realistic economic networks one would have to introduce multiple edge types to track relevant

connections. This can be thought of as a set of matrices, or an adjacency tensor (Aijk ). The adjacency

tensor captures which type of edge exists between which pairs of nodes. Further complexity is introduced

if permissible edge types are contingent on node types (e.g. only bank nodes can provide saving accounts

to individuals) but there is no need in the current context to further burden the notation.

The following table illustrates an adjacency tensor. Links between nodes are indicated by 1. The

diagonal elements are zero as there are no ”self-loops”. Undirected graphs where the direction of the

relationship is not relevant or meaningful can be represented via symmetric matrices. A loan relationship

might be better modeled as a directed edge (distinguishing lender / borrower).

9It is conceivable that some will have null values or missing data
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Edge Type-1 1 2 . . . N

1 0 0 1 0

2 1 0 1 0

. . . 1 1 0 1

N 1 0 0 0

Edge Type-2 1 2 . . . N

1 0 1 0 0

2 0 0 1 1

. . . 1 1 0 1

N 0 1 0 1

4.2 Data Operations

We now have an overview of the economic network data structure and how it represents potentially

interesting concentrations. Yet constructing concrete measures starting with the above raw data may still

involve potentially significant intermediate operations. We classify such operations as follows:

• Simple collection (aggregation) of values from relevant nodes / edges

• Univariate operations on collected values (sorting, binning, calculation of proportions / weights)

• Multivariate operations on collected values (combining data to construct e.g. a spatial weights

matrix)

• Local adjacency matrix operations in the network neighborhood (see example of collecting wealth

contributions)

• Global operations in the network (as required for example to identify the importance of nodes

according to some centrality measures)

We will next describe in some detail operations as those are required for the indexes we will catalog in

the last section.

4.2.1 Categorical Distributions and Counts

A categorical variable Ci associated with the i-th node or edge ranges over some menu of options that can

be encoded as integer values (1, . . . , S). In the case of ordinal variables this set of integers is assumed to also

have a concrete order (we will not make use of that sub-class here). Concentration analysis of categorical

properties is based on the fraction of occurrence (abundance) of variable realizations over node or edge

elements. This type of categorical variable distribution is very common in general and largely the default

option in biodiversity studies. But categorical data are also common in economic / financial context. As

an example, the type of collateral used in a loan contract is a categorical variable that characterizes an

edge (relation) between two nodes (lender and borrower).

For categorical properties the count of occurrences Nr of the r-th attribute value are used to create the

distribution vector:

cr =
Nr
N

(4)
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where

Nr =

N∑
i=1

1{Ci=r} (5)

and

N =

S∑
r=1

Nr (6)

is the total number of nodes or edges under consideration

NB: Once we have converted categorical properties into weights cr, the machinery of indexes is identical

with that of numerical variables that we will see below and many index formulas are in principle the same.

4.2.2 Numerical Distributions

In several classic inequality / concentration indexes the core mathematical object is the distribution of a

numerical variable X taking N ”values” xi, i ∈ [1, N ] over a population of nodes or edges. Here the main

requirement to compute an index is for the data element to admit a meaningful summation to a total

figure:

xT =

N∑
i=1

xi (7)

The summation operation allows the definition of weights for the i-th node or edge numerical property:

wi =
xi
xT

(8)

which then forms the basis of the concentration index computed from the vector w.

Numerical and Categorical approaches to concentration indexes are related given that any numerical

property can be converted into an ordinal property by binning or coarse-classifying the variable range and

classifying any realization into the corresponding discrete values. The binning process defines thresholds

[Hr, Hr+1] where r ∈ [1, S] for the numerical variable x using some specified algorithm (which may or

may not depend on the dataset itself) and then assign individual observations xi to the appropriate bin r.

Counting the occurrences Cr within each bin creates the required categorical (actually ordinal) variable

as per above.

There are two important caveats: The process of binning loses some information which may or may-not

be acceptable for the use case and the binning is an additional modeling element (assumption) that may

interfere (e.g. introduce bias) in the concentration analysis.

The table below illustrates the similarities and difference of categorical versus numerical variables.

Variable Type Numerical Categorical

Value xi Nr

Index Range i ∈ [1, N ] r ∈ [1, S]

Sum xT =
∑N
i=1 xi N =

∑S
r=1Nr

Population Size N N

Categories - S

Weight wi = xi/xT cr = Nr/N

Average Weight µ = XT /N µ = 1/S
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4.2.3 Categorical Clustering of Spatial Data

”Step back and ask, what is the most striking feature of the geography of economic activity?

The short answer is surely concentration”. Krugman (1991).

Multivariate considerations are quite common in the context of spatial analysis. Multivariate datasets

can always be treated using univariate (marginal) methods that explore concentration along one dimension

at a time. Take for example the spatial distribution of a specialized economic activity: the surface area of

commercial real estate units within a region. The data set might involve three data vectors: surface area

per location and the x, y coordinates of the location. Three marginal views are possible: the surface area

distribution (irrespective of location) and the location distribution along either the x or y dimensions. Yet

the complete picture clearly is only revealed once all three dimensions are considered. First, using the x

and y coordinates simultaneously will reveal whether there is true spatial clustering. Using all three data

series may also reveal, for example, that location clustering is correlated (or anti-correlated) with surface

area clustering.

A widely used class of multi-variate measures captures sectoral / geographical concentration. More con-

cretely, a distribution fo numerical values (for example a value attached to nodes representing companies

and expressing company size in terms of FTE) alongside a business sector and the geographic association

of each company.

In order to evaluate the geographic distribution of establishments economists have historically first em-

ployed cluster-based methods, i.e., they measure the spatial concentration of economic activity according

to pre-defined geographic limits (regions, countries etc).10 In a multivariate approach data might be

grouped along categories. Let us use a typical three-dimensional set:

Node (i) Measurement Sector (s) Geography (a)

1 10.1 1 1

2 7.2 1 1

3 3.4 2 1

4 2.7 2 2

5 1.1 2 2

. . . . . . . . . . . .

N 21.1 S G

Two integer map functions S(i), A(i) classify each node into a respective sector and geography. This

arrangement allows the computation of multiple indexes using the categorical or numerical avenue we

already discussed. In a clustering approach, each node property (measurement) is associated with one

industry (business sector) and one geography. We have N measurements Ei (one value per node, for

definiteness let us assume it is a measure of ”size”, e.g. number of employees, turnover etc) which can be

aggregated as follows:

10This leads to the well known Modifiable Areal Unit Problem (MAUP) which can be summarized as sensitivity to the

shape, size, and position of the geographical units used
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ET =

N∑
i=1

Ei (9)

Es• =

N∑
i=1

Ei 1{S(i)=s} (10)

E•a =

N∑
i=1

Ei 1{A(i)=a} (11)

Esa =

N∑
i=1

Ei 1{S(i)=s,A(i)=a} (12)

In the above, the total measured size is ET , the aggregate size of each industry across all areas is Es•

where the bullet denotes an implied summation over all areas. The total size per area is E•a. Within

each area, an industry comprises of Nsa exposures, summing up to a total of Esa for each industry / area

combination. From the absolute values aggregated above we can derive various fractional values11

wi =
Ei
ET

(13)

zi =
Ei

ES(i)•
(14)

qi =
Ei

E•A(i)
(15)

ys =
Es•

ET
(16)

xa =
E•a

ET
(17)

hsa =
Esa

Es•
(18)

In the above, wi is the usual proportion of a node across the entire network as already discussed for

numerical variables. The fractional size of a node within its sector is zi and within its area it is qi. Further,

xa is the fraction of each area as part of the total and ys the fraction of each sector as part of the total.

The allocation to both industry and areas is given by hsa.

As an example, given the above proportions one can construct a number of different HHI type metrics:

H =

N∑
i=1

w2
i (19)

Hs =

N∑
i=1

z2i 1{S(i)=s}, s ∈ [1, S] (20)

Ha =

N∑
i=1

q2i 1{A(i)=a}, a ∈ [1, A] (21)

HG =

A∑
a=1

(xa)2 (22)

HS =

S∑
s=1

(ys)2 (23)

11As before, had the measurement been categorical in nature, we would have to work directly with proportions
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The classic HHI index capturing concentration across the entire node collection is denoted as H. HHI

indexes capturing node concentration within each industry (respectively area) are defined as Hs and Ha.

The geographic concentration of nodes (irrespective of industry) is captured by HG. The HHI index

capturing concentration in the distribution of different industry sectors is HS .

We see here both the power and weakness of simple approaches when in the presence of multi-dimensional

data: marginal (one dimensional) approaches are easy to implement providing immediate insights, yet

there is a proliferation of measures with potentially conflicting messages.

4.2.4 Spatial Weights Matrix

A spatial weights matrix denoted as wij(r) is a derived data structure that is seen in operations involving

spatial data. In the simplest case it is equal to 1 if a suitably defined distance between the two entities i

and j is less than a radius r (0 otherwise).

wij(r) =

1 for d(i, j) ≥ r

0 for d(i, j) < r
(24)

where d(i, j) could be for example the Euclidean distance that is constructed using pairs of numerical

values representing coordinates:

d(i, j) =

√
((xi1 − x

j
1)2 + (xi2 − x

j
2)2) (25)

A spatial weights matrix need not be based on distances but any measure of spatial association. For

example, if a node i is located within a polygon P (territory), the spatial weights matrix linking to another

node j within a polygon Q may be determined by whether P and Q are contiguous territories (have a

common border). The spatial weights matrix is a special case of a parametric adjacency matrix. It is not

defined from economic relations as the example we have seen so far but is inferred from input spatial data.

4.2.5 Computing centrality measures

Last but not least an important class of operations on adjacency matrix data. The structure (topology)

of the adjacency matrix is a core subject of network science. Many approaches to network concentration

analysis compute a centrality measure per node and subsequently explore the distribution of that measure

(thus again decoupling the problem and reducing it to a univariate analysis).

A most fundamental tool is counting the number of edges emanating from a node. This is termed the

node degree dj =
∑N
i=1Aij . The presence of nodes with different degrees (the distribution of dj over the

network) means that nodes may have very different roles within the economic network. This is described

as different network topologies. In network studies this and other centrality measures are designed to help

rank / classify network nodes based on their topological importance. There is a wide variety of such

measures:
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Box 2. Centrality measures are non-trivial examples of derived graph data that

reflect the propensity and distribution network links

In network theory, indicators of centrality assign numbers or rankings to nodes reflecting their

role within a network. There are many examples:

• Degree centrality: Defined as the number of links incident upon a node

• Closeness centrality: The average length of the shortest path between a node and all other

nodes in the graph

• Betweenness centrality: The number of times a node acts as a bridge along the shortest

path between two other nodes

• Eigenvector centrality: Derived from global influence characteristics of different nodes

All these examples can be abstracted as a function from adjacency data to a numerical range

di = φi(A). For example the number of counterparties of a financial intermediary would be

simply the degree centrality computed on edges representing credit contracts.

5 Index Catalog

The index catalog is a list of commonly used metrics across a variety of domains, cast in a uniform notation

and with reference to the network data structures already discussed in the previous sections.

The list is not exhaustive but aims to cover the major families. Within each discipline there are variations

in particular in scaling conventions that may subtly modify the circumstances for which each expression

is suitable. Therefore there is no attempt to reduce the collection to ”genuinely different” approaches.

5.1 Index Functions

The general (symbolic) form of a network concentration index computed on the basis of graph property

data has been mentioned already:

Ipq = F (xpn,y
q
m, A

q) (26)

where (xpn,y
q
m) are sets (dataframes) of property data vectors populated with either numerical or cat-

egorical values, A is a set of adjacency matrices with binary values and pq filters the set of nodes and

edge connection by type. This form appears sufficiently general but in practice it is constrained by the

specification of F . In particular complex pre-processing operations on network data that concern e.g.,

multiple node or edge types or involve complex algorithms would in practice better handled outside the

index definition.

In more pedantic representation the index function is recast as:

I = F (w1, . . . , wn, c1, . . . , cm, A1, . . . , Aq) (27)

where wn are vectors of numerical variable weights, cn are vectors of categorical (encoded as integers)
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proportions and Aq are matrices of boolean variables. In practice most commonly used indexes are fairly

simple functions focusing on slices of the available dataset but we already saw multi-dimensional examples.

5.2 Index Function Sub-Categories

Popular indexes can be classified according to various attributes. The following will be use oriented

segmentation:

• General Purpose Indexes using on any one of the w, c data vectors. This category forms the majority

of common indexes. In this use case, some property of the system is studied in isolation from other

properties and/or the network topology. The most developed theory and practice of concentration

indexes concerns the one-dimensional case but some applications require higher dimensional consid-

erations. The vast majority of classic concentration measures are univariate risk measures. They

are a map from a one-dimensional distribution that captures some property of interest into a real

number (typically positive). Nevertheless there are some important bivariate examples in use and

spatial concentration indexes can be two or three dimensional.

• Diversity Indexes are distinct as the use exclusively categorical c vector data. While their form is

quite close to general purpose indexes, they are special in that both the population size N and the

number of categories S may be relevant and used in the construction of the index.

• Temporal Clustering which is a special univariate numerical analysis.

• Spatial Concentration. Multivariate Concentration Indexes. Two or more properties from the (w, c)

set are studied jointly. This segment includes Spatial Concentration Indexes which capture the

density of objects (or object properties) in two or three-dimensional space.

• Network Concentration Indexes that are calculated using the adjacency matrices A and (optionally

additional information from the numerical or categorical vectors X,Y ).

5.3 General Purpose Indexes

General purpose indexes focus on a single variable (univariate, one-dimensional) and can be used for either

numerical or categorical data.

5.3.1 L-Zero Norm

The l0 norm is a traditional sparsity measure. It is the count of non-zero elements in a vector. This is

obviously meaningful for numerical data only.

l0(w) = #{wj 6= 0, j = 1, . . . N} (28)

5.3.2 Range

The range is defined as the absolute difference between the highest and lowest weights divided by the

mean proportion. The notation has been discussed already in 4.2:

R =
max (w)−min (w)

µ
(29)
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5.3.3 Variance

The standard statistical variance serves also as a basic measure of concentration or dispersion.

V =
1

N

N∑
i=1

(wi − µ)2 (30)

5.3.4 Coefficient of Variation

The coefficient of variation, also termed relative standard deviation, is derived from the variance.

CV ≡
√
V

µ
(31)

5.3.5 Standard Deviation of Logarithms

For numerical values spanning a large range taking the logarithm may be appropriate:

H =

√√√√ 1

N

N∑
i=1

(log(wi)− log(µ))2 (32)

5.3.6 Berger-Parker Index

The Berger-Parker index is simply the maximum wi or cr value in the dataset. Hence it is the largest

weight or abundance (frequency) of an attribute of either a node or edge in the network.

BP ≡ CR1 (33)

This index is used also in its inverse form.

5.3.7 Concentration Ratio

For numerical attributes of nodes or edges, the definition of the concentration ratio of order a is the

sum of the a-th largest weights (assuming a sorted set of observations):

CRa =

a∑
i=1

wi (34)

The index can be applied to either node or edge properties and it is very popular for stylized values e.g.

a = 1, 4, 10, 20 at it provides an intuitive and immediately understood measure of concentration.

Two points worth mentioning here: the ordering (sorting) of the vector w and the presence of an index

parameter a.

See Also Concentration Ratio

5.3.8 Relative Mean Deviation

The relative mean deviation (or Pietra Coefficient)[22]

RMD =

∑N
i=1 |wi − µ|

2|µ|
(35)

It is equal to the maximum distance between the Lorenz curve and the equal distribution line.

https://www.openriskmanual.org/wiki/Concentration_Ratio
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5.3.9 Mean Log Deviation

The mean log deviation (also Thiels L [23]) is given by:

L =
1

N

N∑
i=1

log(
µ

wi
) (36)

5.3.10 Herfindahl-Hirschman Index

The widely used Herfindahl-Hirschman Index is expressed as

HHI =

N∑
i=1

w2
i (37)

For categorical attributes one replaces wi with the corresponding category count cr.

See Also HHI

5.3.11 Simpson Index

The Simpson Index is related to the HHI

D1 = 1−
N∑
i=1

w2
i (38)

D1 ≡ 1−HHI (39)

It is also used as the inverse Simpson index:

D2 =
1∑N

i=1 w
2
i

(40)

The above examples show that indexes are used in variety of very closely related forms.

5.3.12 Hall-Tideman Index

The HTI index is defined as

HTI =
1

2
∑N
i=1 iwi − 1

(41)

An alternative name is the Rosenbluth Index.

5.3.13 Gini Index

The Gini index is defined as

G =
1

N

N∑
i=1

(1− 2i)wi + 1 (42)

It is worth mentioning that the Gini index has been reformulated in dozens of different expressions [24].

See Also Gini

https://www.openriskmanual.org/wiki/Herfindahl-Hirschman_Index
https://www.openriskmanual.org/wiki/Gini_Index
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5.3.14 Kolm Index

Another important parametric class is that of the Kolm indexes [25]

Iα =
1

α
log

(
1

N

N∑
i=1

eα[wi−µ]

)
(43)

where is α is a parameter that may be assigned any positive value.

5.3.15 Hannah-Kay Index

The (generalized) Hannah-Kay index is defined as [26]

HKa =

(
∑N
i=1 w

a
i )1/(1−a) for 0 ≤ a 6= 1

e(
∑N

i=1 wi logwi) for a = 1,
(44)

We can think of this index as a generalization of the HHI index (which is a special case for a = 2). The

reciprocal HK index is also used.

See Also Hannah-Kay

5.3.16 Tsallis Entropy

The Tsallis entropy of order a is defined as

Ha =
1

a− 1
(1−

N∑
i=1

wai ) (45)

This is used also as the Hill-Tsallis index

Na = (1− (a− 1)Ha)1/1−a (46)

5.3.17 Atkinson Index

The parametric Atkinson index is given by [27]

Aa =

1−Na/(a−1)
(∑N

i=1 w
1−a
i

)1/(1−a)
for 0 ≤ a 6= 1

1−N e(
1
N

∑N
i=1 logwi) for a = 1

(47)

5.3.18 Gaussian Entropy

The Gaussian entropy is defined as [28]

HG =

N∑
i=1

logw2
i (48)

https://www.openriskmanual.org/wiki/Hannah_Kay_Index
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5.3.19 Renyi Entropy

The Renyi entropy is defined as

Ha =
1

1− a
log(

N∑
i=1

wai ) (49)

Used also as the Hill-Renyi index

Na = eHa (50)

5.3.20 Shannon Index

The Shannon Index is the Shannon entropy. Alternative names: Shannon-Wiener.

H = −
N∑
i=1

wi logwi (51)

See Also Shannon

5.3.21 Theil Index

The Theil T index is the Shannon index with a sign reversal

T ≡ −H (52)

See Also Theil

5.3.22 Hoyer Sparseness

The Hoyer Sparseness is defined as [29]:

HS =

√
N −

∑N
i |wi|√

(
∑N

i w2
i )√

N − 1
(53)

5.3.23 L-p Norm

Many of the named indexes are based on some expression involving the lp norm of the data vector:

‖w‖ = (

N∑
i

|wi|p)1/p (54)

5.3.24 Generalized Entropy Measures

Measures related to the concept of entropy can be integrated into a generalized entropy expression:

GEa =


1

Na(a−1)
∑N
i=1 ((Nwi)

a − 1) , a 6= 0, 1∑N
i=1 wi log(Nwi), α = 1

− 1
N

∑N
i=1 log(Nwi), α = 0

(55)

• For α = 0 it becomes the mean log deviation.

https://www.openriskmanual.org/wiki/Shannon_Index
https://www.openriskmanual.org/wiki/Theil_Index
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• For α = 1 it becomes the Thiel index or Shannon entropy

• For α = 2 it becomes the half-squared coefficient of variation.

5.4 Diversity Indexes

5.4.1 Margalef Diversity Index

For a categorical variable that has S category types distributed over nodes or edges and N total measure-

ments the Margalef index is simply:

D =
S − 1

lnN
(56)

5.4.2 Menhinick Diversity Index

The Menhinick Diversity metric comes also from biodiversity studies and is rather similar to the Margalef

index:

D =
S√
N

(57)

5.4.3 McIntosh Index

The McIntosh Index for categorical variables is [30]:

DMc =
1−

√∑S
r=1 c

2
r

1− 1/
√
N

(58)

NB: This is similar to the HHI index but applied to category abundances but adjusts for sample size N .

5.4.4 Pielou Evenness Index

Pielou’s measure of ”species evenness” divides the Shannon index by the natural logarithm of the number

of categories S

H = −
S∑
r=1

cr log cr (59)

J =
H

ln(S)
(60)

5.4.5 Brillouin Index

The Brillouin Index is nearly identical to the Shannon-Wiener entropy but is based directly on category

counts (not proportions) and explicitly accounts for

HB =
log(N !)−

∑N
i=1 log(Nr!)

N
(61)

5.5 Temporal Clustering

Temporal clustering is a special type of univariate distribution where the variable is a date, timestamp or

other indicator of time.
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5.5.1 Tango Temporal Clustering Index

Tango proposed the following quadratic form as an index for the level of clustering in time [31]. All

observations are grouped into m equal temporal intervals. The frequency count is N1, . . . , Nm. The

weight vector is cm = Nm/N where N is the total number of observations. The index is given by

T =

m∑
k=1

m∑
l=1

clDlmcm (62)

where Dlm is a (temporal) distance matrix. A standard expression is Dlm = |l−m|, the index difference

between temporal intervals.

5.5.2 Greenwood Statistic

The Greenwood statistic is a spacing statistic that can be used to evaluate clustering of events in time

(also linear clustering in space). In general, for a given sequence of events in time or space the statistic is

given by

GS =

N∑
i=1

w2
i (63)

where wi represents the interval between events or points in space and is a number between 0 and 1

such that the sum of all wi = 1. The formal appearance of the formula is identical to the HHI index but

the use context focuses on distributional properties under the assumption of independent arrivals.

5.6 Spatial Concentration

Spatial concentration is generally a multi-dimensional concept. It involves at least a value measurement

and a location. In the most common use case of spatial economics the typical dataset is three-dimensional.

Historically the analysis of spatial concentrations has developed three major approaches (in order of

increasing complexity):

• Purely clustering (or categorical) methods where spatial data is aggregated implicitly in ”regions”.

This procedure converts the geospatial locations of measured values into categorical variables.

• Spatial Weight Matrix methods, where continuous distance measurements are converted into spatial

adjacency matrices

• Continuous methods that do not truncate spatial data but use them directly, e.g. kernel function

approaches that estimate distribution densities.

We only include in the catalog the first two types as continuous methods add a significant computational

layer.

5.6.1 Ellison-Glaeser Index

The Ellison-Glaeser Index (EG) is an index developed for the assessment of industrial agglomeration [32].

Using the notation of 4.2.3, the EG industrial concentration index (per industry s) is given by

γs =
Gs − (1−HG)Hs

(1−HG)(1−Hs)
(64)
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where Gs is a metric capturing industry concentration per area

Gs =

A∑
a=1

(hsa − xa)2 =

A∑
a=1

(
Esa

Es•
− E•a

ET
)2 (65)

5.6.2 Maurel and Sedillot Index

The Maurel-Sedillot Index for a sector k is a variation on the EG index given by [33]:

γk =
Gk −H
1−H

(66)

where G is a measure of geographic concentration:

Gk =

∑M
r s2kr −

∑
r x

2
r

1−
∑M
r x2r

(67)

and

H =
∑
j

w2
i (68)

is the standard HHI index.

5.6.3 Getis and Ord G Statistic

The Getis and Ord G statistic measures the degree of association that results from the concentration of

weighted points within a radius r from the point i. It is defined as [34]:

Gi(r) =

∑
j wij(r)xj∑

j xj
(69)

where wij(r) is a symmetric binary spatial weight matrix with ones for all links defined as being within

distance r of a given node i and all other links are zero including the link of node i to itself. The numerator

is the sum of all xj within r of i but not including xi. The denominator is the sum of all xj not including

xi.

A global G across the network is given by:

G(r) =

∑N
i=1

∑N
j=1 wij(r)xj∑N

i=1

∑N
j=1 xixj

, i 6= j (70)

5.6.4 Moran’s I

Moran’s I is defined as

I =
N

W

∑N
i=1

∑N
j=1 wij(xi − x̄)(xj − x̄)∑N

i=1(xi − x̄)2
(71)

where wij is again a suitably defined spatial weight matrix and W =
∑N
i=1

∑N
j=1 wij .

5.6.5 Geary’s C

Geary’s C is defined as

C =
(N − 1)

∑N
i=1

∑N
j=1 wij(xi − xj)2

2W
∑N
i=1(xi − x̄)2

(72)
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5.6.6 Marcon and Puech M-Functions

The Marcon and Muech M-Functions allow the evaluation of the relative geographic concentration and

co-location of industries in a non-homogeneous spatial framework. They are defined as [35]

MS(r) =

∑NS

i=1

∑NS
j=1,j 6=i wij(r)xj∑N
j=1,j 6=i wij(r)xj∑NS

i=1
XS−xi

X−xi

(73)

Where N nodes (companies, projects), wij(r) the spatial weights matrix, NS nodes of sector type S,

xi the numerical attribute of entity i, XS the numerical value of sector S and X the aggregate numerical

value.

5.7 Adjacency Clustering Measures

In the last sub-category of measures in our catalog we focus on pure adjacency based measures which are

generically of the form I = F (Aq). To start with, any of the centrality measures mentioned in 4.2.5 can be

analyzed for dispersion / concentration using the general indexes of section 5.3. In the sequel we describe

some more specialized measures.

5.7.1 Graph Density

Graph density (or Edge density) is a metric that comes from network theory and aims to capture the

prevalence of connectivity within a graph. It is defined as:

D =
M

N(N − 1)
(74)

where N = dim(A) is the number of nodes (of some type p) and M =
∑
i

∑
j Aij is the number of edges

(again of some type q) in G. High graph density means economic agents have rich inter-dependencies on

each other. This ratio indicates how close the graph is to a complete graph (a complete graph has edge

density 1).

5.7.2 Global Clustering Coefficient

For each node i, the local clustering coefficient, CLi is the fraction of pairs of neighbors of i that are

connected within than set. The maximum number of possible links between the neighbors of node i is

simply di(di − 1)/2 (where di is the degree - number of edges emanating from node i).

The (local per node) clustering coefficient expresses the fraction of actual connections over the maximum

value. Let vn ⊆ V be the set of nodes connected to i-th node. That is, vj ∈ vn when Aij = 1. Then

c =
∑
jk Ajk where the pair of (j, k) ranges over all nodes in the neighborhood vn is the number of closed

triangle paths.

CLi =
2c

di(di − 1)
(75)

In the below example with four nodes (A,B,C,D) the local clustering coefficient of node A is 1/3 (the two

dotted edges indicating the additional two potential connections that would bring the clustering coefficient

to unity)
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Calculating Local Clustering

A

B

C

D

It is also expressed as:

CLi =

∑
j,k AijAjkAki∑
i di(di − 1)

, j, k 6= i (76)

where the numerator counts the number of triangles in which node i participates. The global clustering

coefficient is then given by

CL =

∑
i,j,k AijAjkAki∑
i di(di − 1)

, j, k 6= i (77)

The average clustering coefficient is simply the average of CLi over all nodes:

CLA =
1

N

N∑
i=1

CLi (78)

5.7.3 Network Entropy

An entropy like measure based on the adjacency matrix can be computed by assigning a random walk

probability from node to node on the basis of its degree di. More specifically if we define transition

probabilities as per

pij =

0, Aij = 0,

1/di, Aij = 1
(79)

then a network entropy is defined as [36, 37]:

H =
1

N ln(N − 1)

N∑
i

ln(di) (80)
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