
Open Risk White Paper

Connecting the Dots: Tensor Representations
of ActivityPub Networks

Authors: Philippos Papadopoulos

February 2, 2024

www.openriskmanagement.com

The open future of risk management

https://www.openriskmanagement.com

1
Open Risk

Tensor Representations of ActivityPub Networks

SUMMARY

In this third Open Risk White Paper on Connecting the Dots we explore representations of online commu-

nication networks that are organized according to the ActivityPub protocol. We discuss the main relevant

features of the protocol and the broader application ecosystem around it that shapes emerging online net-

work topologies. We develop a stylized description of ActivityPub compliant networks as a mathematical

multilayer network. Tensor representations of such complex graphs generalize the more familiar matrix

algebra tools and can be useful in various ways: On the one hand they help empirical work in analyzing

the characteristics of such networks, on the other they enable simulating and exploring network behavior.

Further Resources

• The Open Risk Manual is an open online repository of information for risk management developed

and maintained by Open Risk. Various concentration risk concepts mentioned in this White Paper

are further documented and explained using dedicated Open Risk Manual entries.

• The Open Risk Academy offers a range of online courses around risk and sustainable portfolio

management, which utilize the latest in interactive eLearning tools.

• The Open Source Repository contains a variety of open source tools and resources.

• More content: Open Risk White Papers and Open Risk Blog

About Open Risk

Open Risk is an independent provider of training and risk analysis tools to the broader financial services

community. Our mission is captured by the motto: The open future of risk management. Learn more

about our mission and projects at: www.openriskmanagement.com

Copyright 2024, Open Risk. All rights reserved.

https://www.openriskmanual.org/wiki
https://www.openriskacademy.com/
https://github.com/open-risk
https://www.openriskmanagement.com/open-risk-white-papers/
https://www.openriskmanagement.com/blog/
www.openriskmanagement.com

2
Open Risk

Tensor Representations of ActivityPub Networks

1 Introduction

In recent times, supported by developments in information technology, there is increasing focus among both

academics and practitioners that aims to connect the dots by analyzing economic phenomena using graph

theory and network analysis. Such developments create more detailed understanding of the structures and

interactions between economic agents, ultimately guiding towards better policies and risk management.

Examples of economic networks already studied include the system of interconnected financial institutions,

where potentially adverse linkages are an issue. This topic rose to prominence after the financial crisis

of 2008 (e.g.,[1, 2, 3] and more recent studies in [4, 5]). The explicit modeling of financial contracts as

networks is now a fruitful line of inquiry ([6, 7, 8]). In broader economic context, networks show up e.g.,

in the analysis of core/periphery networks ([9]), the structure of multinational affiliate networks ([10]),

shadow banking ([11]), collecting relevant economic statistics ([12]) and the underpinning of modern flow-

of-funds analysis ([13]). Empirical analysis of economic networks is used also to understand how interlinked

households and non-financial firms affect borrower delinquencies and defaults which ultimately affects the

health of the entire system. ([14, 15]).

An important aspect of the above-mentioned economic networks is that they are, by-and-large, implicit.

As information structures they do not exist in one integrated data universe. Rather, they materialize

as the cumulative effect of disjoint activities such as: payments (electronic or in cash), as updates to

corporate accounting systems and as many other contractual bookkeeping operations. In general only a

fraction of that activity will be fully digitized and even smaller subsets will be available as a single data

set.

In the meantime, network analysis is of growing importance also in many other disciplines outside fi-

nance and economics. The list includes chemistry, biology, epidemiology, sociology and communication

networks. In all of these fields there are growing bodies of work that make use of generalized graph struc-

tures as representations of complex decentralized networks. Notably, the explosion for internet enabled

communications and Web technologies has drastically increased the need to understand such systems.

This has spurred the development of relevant tools from mathematics and data science. The emergence of

large-scale social media networks, in particular, has spurred data intensive Social Network Analysis where

the network structure is fairly explicit (available) and large data sets represent it fairly accurately [16].

Our focus in this White Paper is motivated by important recent developments in online networks1 which

use both existing and new Web technologies to establish novel decentralized communication patterns. The

primary current example of such novel Web 3.0/Fediverse applications concerns new architectures for

social media. The general pattern is an ensemble of distinct network elements which communicate with

each other even while remaining independent platforms. A key enabler of this emergent web networking

pattern is theActivityPub protocol. This is a specification towards decentralized (more precisely, federated)

social networking [17], based upon the exchange of ActivityStreams [18] messages that follow the Activity

Vocabulary [19]. The ActivityPub proposal has been standardized and published by the W3C and has

motivated the design of several federated social networking systems.

There are presently several concrete ActivityPub compliant implementations and the protocol sees

meaningful adoption, primarily in the domain of federated social networks. Current ActivityPub networks

consist of several million individual users, using several thousands of distinct servers, and a few dozens

1The domain is sometimes captured under the banner of Web 3.0 or Fediverse, though these labels are not rigorous and

are evolving.

3
Open Risk

Tensor Representations of ActivityPub Networks

of distinct server types [20]. Different ActivityPub server types might target a variety of use cases, or

simply reflect different underlying technologies. Use cases include exchanges of smaller or larger pieces of

text (termed Microblogging/Blogging), cataloging and reviewing of Books, Podcasting, the creation and

sharing of Images or Videos, shared Calendar and Event Planning applications, Music Hosting, Bookmark

or Link Aggregators, Discussion Forums and more. Federation of collaborative software development

activities (based on the git paradigm and tools) is another important work-in-progress.

ActivityPub is built on top of the widely used HTTP (web) protocol which removes the need to install

new software or to develop new networking libraries. It uses JSON as the data exchange format which is

now a de-facto standard for online data exchange. As a W3C (World Wide Web Consortium) standard, it

benefits from a degree of stability, assurance and potentially forward interoperability with other relevant

web protocols.2

At the same time, ActivityPub does not specify all ingredients of fully deployed and interoperable

information exchange networks. The precise form and nature of decentralized data storage and digital

identity are not part of the specification, and it lacks a fine-grained object-capability model. As more

concrete applications are pursued they raise requirements for more refined specifications, moderation,

integration of payment methods, and collaboration mechanisms. As a result the framework is still actively

developed [21, 22]. In particular, there is potential integration of social network infrastructure into a

broader range of online activities with a possibly more explicit economic footprints. Thus, the two distinct

strands of network phenomena we discussed here, the ubiquitous but still implicit economic networks and

the emerging, decentralized, social networks come together in what one might term a new decentralized,

digital, socio-economic network category.

A decentralized, digital, socio-economic network would be defined as loosely coupled online

infrastructure, with distributed control and ownership by diverse agents, which supports online

activities and behavior such as the publishing and discovery of information, the establishment of

interest-based relations and groups, and the exchange of digital services where those activities

and exchanges may have an explicit economic dimension.

1.1 Motivation and Objective

The feasibility, likelihood, pace of adoption and precise shape of digital socio-economic networks remains

open. An example of further specifications that aim to shape more concretely this emerging area is

available here [23]. Security and privacy issues, other design trade-offs and choices that determine which

information is distributed (and how) are still unresolved. More fully-fledged object capabilities[24] and

access control models would provide technical foundations from which various unanticipated use cases can

be met. Nevertheless, given the central enabling role and rapid maturing of digital network technologies,

not least as seen at work during the recent pandemic, there is sufficient motivation to explore this emerging

domain further.

More specifically, in this third Open Risk White Paper on Connecting the Dots [25, 26], we develop

mathematical representations of federated online networks that help encode succinctly certain important

2While ActivityPub is a popular option it is only one of many federation network protocols under development (SoLiD,

Diaspora, OStatus, DFRN, Zot/6, etc. being alternatives) and related Peer-to-Peer or distributed protocols that receive

attention. There are also protocols, for example the Matrix and XMPP protocols that are federated but are not part of the

ActivityPub network.

4
Open Risk

Tensor Representations of ActivityPub Networks

elements of the structure of such networks. In turn this enables using well-known mathematical operations

from graph theory and network analysis. We focus on federated networks adhering to the ActivityPub

protocol, which we will discuss in the relevant detail. Graph theoretic representations of ActivityPub

networks have already been used recently to enable the consistent capture (data modeling) and statistical

analysis of public fediverse data [27, 28, 29]. Supporting network data analyses is one key motivation

for this work. Another motivation is enabling the theoretical modeling and simulation of ActivityPub

network properties and behaviors (see e.g., [30]). Mathematical representations of ActivityPub networks

can thus help the development of federated network patterns as they scale both the number of users, the

variety of uses and the intensity of data exchange. In upcoming years the volume and distribution of data

over such networks is likely to grow exponentially. The integration of, for example, algorithmic agents -

which is explicitly envisaged in the ActivityPub specification - is likely to create significant traffic of its

own. While the presence of automated, algorithmic actors in social networks and their potentially harmful

impact is currently debated actively in the context of centralized digital platforms, tools that assist human

users with managing ever-increasing information flows will require calculation agents (e.g., for discovery

purposes [31]) of some sort. Faithful graph representations of data availability and network topologies can

assist with the design of relevant and adapted algorithms in this direction.

With the above motivating factors, our objective here is to develop a concrete (if somewhat stylized)

description of decentralized networks based on the ActivityPub protocol. The broader toolkit we will tap

into is going under a variety of names, such as multilayer networks, temporal graphs, multiplex networks or

multidimensional graphs. Good overviews of the mathematics involved and links to open source software

that enables working with such structures are given in ([32, 33]).

1.2 Structure of the White Paper

• In this Introduction section we place the white paper in the context of contemporary developments

around online networks and motivate the need for mathematical representations to help better

understand growing information flows.

• Section (2) summarizes the technical specification of ActivityPub, focusing on the elements that are

important for establishing network representations and mathematical graphs.

• Section (3) illustrates concretely how ActivityPub networks can be modeled using classic (simple)

graph structures. This is an important preliminary step before we discuss more elaborate network

models.

• Finally, Section (4) covers the concept of multi-layer networks and the associated tensor representa-

tions in the context of ActivityPub network patterns.

2 ActivityPub Network Structure

We review here some parts of the broader ActivityPub related specifications [17, 18, 19] with the objective

to identify the aspects that determine most directly the connectivity patterns of compliant online networks.

5
Open Risk

Tensor Representations of ActivityPub Networks

2.1 A Bird’s Eye View of ActivityPub

The list of core definitions, design choices and architectural constraints that are relevant for our purposes

includes the following:

• Client-Server Architecture: The ActivityPub pattern suggests a Client-Server type network

architecture. The specification provides both a Client-to-Server API for creating, updating and

deleting online (web) content, and a federated, Server-to-Server, API for delivering notifications and

content between Servers.

• HTTP POST/GET verbs: An ActivityPub network consists of digital devices (both Clients and

Servers) connected over the internet and interacting via well-defined API’s using exclusively HTTP

POST/GET verbs.

• Implementation Agnostic: Client and Server implementations are not specified in any detail.

They simply need to comply with a set of federation requirements when communicating within the

network.

• Actor Objects: Most individual users participating in the network are represented by the Actor

data model.3 Actor objects represent participating users (might be persons or other digital agents)

that exchange information in a voluntary (user initiated) and intermittent manner.

• Actors are Server Specific: The same real user may have accounts on multiple Servers, but each

of these Actors is a unique object (e.g., with a unique network address).

• Server based Authentication/Authorization: Access authority to networked resources is reg-

ulated by Servers through the ability to login and access / manipulate objects.

• Activity Objects: Activity objects are messages that codify the range of possible user (Actor)

actions. Different activity types codify the nature of the message exchanges (Posts, Follow requests

etc.).4

• Wrapped Data Objects: The specification requires that the transmission of any actual data

objects (Text, Images, Audio etc.) is being wrapped inside Activities objects.

• JSON-LD Format: Servers exchanging data objects must use the ActivityStreams object repre-

sentation that is based on the JSON-LD format (media type: application/ld+json)[34].

• Global URL’s: All data objects being distributed over the ActivityPub protocol must have unique

global identifiers (with some exceptions for transient objects). These identifiers must be publicly

de-referenceable endpoints (for example they must be secure HTTPS URL’s).

• Actor Inbox and Outbox: Actor objects must have, in addition to various object identifiers, two

mandatory properties: An Inbox, which is a reference to an ActivityStreams collection comprising all

the messages received by the Actor and an Outbox, which is an ActivityStreams collection comprising

all the messages produced by the Actor. These properties are the Actor ports through which they

connect with other Actors.
3Administrators or other privileged users are not explicitly modeled.
4Activities are the recognizable verbs of the ecosystem as far as network users are concerned. As mentioned, the only

underlying technically implemented verbs are the two HTTP GET and POST actions.

6
Open Risk

Tensor Representations of ActivityPub Networks

• Client-Centric: In ActivityPub it is Clients that initiate communication sessions with Servers (A

Pull not Push Model). Specifically, Client to Server interaction takes place through Clients posting

Activities to an Actor’s Outbox.

• Atomic Activities: POST requests from Clients or Servers contain each a single Activity (but an

Activity may contain multiple embedded objects).

• Message Delivery: Servers await incoming requests from other Servers or Clients. They must

perform delivery on all Activities posted to the Actors outboxes. Depending on the type of Activity,

Servers may be required to carry out further side effects (e.g., modify the state of a database).

The above short list of important ActivityPub elements and choices provides a quick sketch of what the

ActivityPub network looks like. It is primarily the Server-to-Server API that most directly determines

the federated network structure, hence it will be our primary focus here5 For concreteness, an illustrative

realization of an ActivityPub network would be a collection of running Web Servers (websites), connected

to each other over standard internet infrastructure; The network will feature a population of human users,

accessing those Servers via, e.g., their web browsers, which are running on home computers or mobile

phones; Users would connect to Servers and produce / share information via their Clients, and finally

federated Servers would distribute that information to other users who consume it through their own

Clients. We will now discuss in more detail some of the key components more relevant for the network

graph model.

2.2 ActivityPub Server Implementations

ActivityPub Servers (also called Instances, or Pods, or Services) are the fundamental building block of

ActivityPub networks. Every active Server running on a host computer will have a valid, https-enabled

domain or subdomain. A host machine will typically be a networked computer that runs one or more

ActivityPub Server programs and listens to certain network ports.

In order to federate (reliably exchange information) with an existing ActivityPub network, a Server

has to implement the Server-to-Server protocol. Servers are set up and controlled by administrators who

have the authority to e.g., start or discontinue any service running on a host computer. They also have,

in principle, access to any network user data that is routed through the Server (anything that is not

encrypted).

The ActivityPub specification does not constrain Server designs beyond the basic required functionality

that enables federation. Concrete Server implementations have to make choices on a range of important

issues (indicatively):

• The number of (regular) users that have access to a Server (single-user versus multi-user instances).

At least one Actor is required for a normal Server to be operational in the network, but there is no

upper bound. Servers will in general have privileged users (moderators) and many related policies

and tools. The internal, within-server, flow of information and detailed side-effects is not described

in the protocol.

5Hence elements out-of-scope are i) the Client-to-Server API, ii) a significant part of the Server-to-Server specification

that concerns how information propagates over the network (delivery) and iii) (m)any technical implementation details.

7
Open Risk

Tensor Representations of ActivityPub Networks

• On the type of media and formats that get exchanged, processed and stored through Activities

(Text, Image, Audio, Video, etc.). In other words, while ActivityPub specifies the data envelope

shape and the addressing and delivery mechanisms, it does not specify what to do with the envelope

content.

• How to persist the state of the federated communication network using e.g., Server host filesystems

and/or different types of databases.

• Which privacy controls to implement and the demarcation of public versus private boundaries more

generally.

• What kind of network federation policies to apply (blacklists and/or whitelists of other Servers).

These choices are fairly important in concrete applications and have implications on the network struc-

ture and information flow patterns. In this work we aim to keep an agnostic stance versus such Server

specific details.

2.3 ActivityPub Object Hierarchy

Within and between each running Server, somewhere in their computer memory, or in transit between

Servers there will be the data objects originated, distributed and stored in the network. The specification

provides a high level data model for those objects. It sketches certain logical object relations and hierarchies

(one can think of it as an Ontology (in the Web Ontology Language sense) or alternatively as an UML

sketch of an Object-Oriented class structure). This part of the specification is useful as a starting point

for Server implementations. With a few important exceptions, it does not play a direct role in determining

the topology of the federated Server network but is nevertheless useful to have as background knowledge.

• Object: Describes an ActivityPub data object of any kind. The Object type serves as the base

type for most of the other kinds of objects defined in the Activity Vocabulary, including other Core

types such as Activity, IntransitiveActivity, Collection and OrderedCollection.

• Link: A Link is a reference to a resource identified by a URL. Many of the properties defined by

the Activity Vocabulary allow values that are either Objects or Links. When a Link is used, it

establishes a relation connecting the subject (the containing object) to the resource identified by the

link.

• Activity: An Activity is a subtype of Object that describes some form of user action that may

happen, is currently happening, or has already happened. The Activity type itself serves as an

abstract base type for all types of activities and does not carry any specific semantics about the kind

of action being taken.

• IntransitiveActivity: Instances of IntransitiveActivity are a subtype of Activity representing in-

transitive actions. They do not involve an object, hence none is provided.

• Actor: Formally, participants of ActivityPub networks are conceptualized as Actor objects.

• Collection: A Collection is a subtype of Object that represents ordered or unordered sets of Objects

or Links. A collection is simply a logical container of objects (similar to arrays or lists in programming

languages).

8
Open Risk

Tensor Representations of ActivityPub Networks

• OrderedCollection: Is another subtype of Collection, whose members are assumed to be strictly

ordered (e.g., in chronological order).

• CollectionPage: An object used to represent distinct subsets of items from a Collection (useful for

presenting to users manageable chunks of information).

• OrderedCollectionPage: Same as the CollectionPage, but used to represent ordered subsets of

items from an OrderedCollection.

2.4 Actors

As mentioned already, individual users are represented by an Actor data object. An Actor is the entity

that is modeled as performing an Activity (e.g., posting a message to the network). This object must

somehow get stored in the Server. Actor objects will be central elements in our graph models, typically

represented as the nodes of various networks. Normal network users are represented by Actors, but as

already alluded, administrators, moderators and potentially other special users may have interactions

with Servers that are not captured in the specification. Importantly, user accounts on different Servers

correspond to different Actors.

The Actor ID is a valid URL that describes the entity. An Actor is documented via a publicly accessible

JSON-LD document (effectively an online user profile). The Actor object can be queried with a GET

request to obtain the profile. The Actor data object gives identification information (e.g, the username).

An ActivityPub Actor has a mandatory Inbox and Outbox properties. This is an essential and important

attribute (discussed more below). Servers can POST to an Actor’s Inbox to send them a message (as part

of an Activity) and Servers can GET from an Actor’s Outbox to see what messages they have posted

(subject to authorization).

2.4.1 Actor Types

An Actor might represent real persons (whether a person acting as individual, a representative of organi-

zation or other grouping of people). But an Actor can also represent a software application (for example a

bot with various levels of ascribed intelligence). The diversity of Actor types is captured by the following

range of possibilities indicated in the specification:

• Person Actor: Represents an individual person. E.g., social media accounts that represent humans

using their personal computing devices to access the network.

• Group Actor: Represents a formal or informal collective of Actors (e.g., members of an online

forum).

• Organization Actor: Represents an organizational entity. These are types of online accounts

that represent a real-world or digital organization. This will typically be operated by one or more

designated humans (e.g. a social media manager) that have delegated authority to engage in the

network on behalf of the organization.

• Application Actor: Describes any software that gets authorized to operate as a programmatic

participant in the network. These might be, e.g., algorithmically driven agents or other pieces of

software. The simplest examples would act as automated publishers or repeaters of content, while

more advanced generations may include bots with more advanced capabilities.

9
Open Risk

Tensor Representations of ActivityPub Networks

• Service Actor: Represents a service of any kind. These may include for example IoT devices

providing sensor measurements. Seen as network Actors, these sensors may be considered as passive

nodes, focusing on data and context provision, as part of a heterogeneous digital network.

Actors may have additional properties depending on their type. E.g., People Actors may have detailed

names, other identifiers, gender, age or ethnicity information, location or device data, etc. Organizational

Actors may alternatively have identifiers, category of business, size, foundation date, mission statements,

location, etc. Application Actors may have identifiers, functionality description, source code documen-

tation, version information etc. Finally, automated IoT services may have identifiers, manufacturer info,

indicators of available connectivity protocols etc.

2.5 Activities

Along with the all-important Actor object we just discussed, Activities are another central object in

ActivityPub (it is in the name after all!). The Activity object acts as a conduit for delivering the network’s

objective: enabling the exchange of standardized information. An Activity is realized via a message that

may or may not include a more detailed data object. It captures some form of action (past, present, or

future intention). Every message sent on behalf of an Actor has a Link to the Actor’s JSON-LD file. Any

Actor receiving the message can look up relevant information and start interacting as appropriate.

2.5.1 Activity Format

The schema used for expressing activities in ActivityPub makes use of the ActivityStreams specification.

All exchanged Activities must respect this format, otherwise there is no guarantee they will be understood

by federating Servers. In turn ActivityStreams is expressed as JSON-LD (JSON for Linked Data) format.

JSON-LD is an extension to plain JSON (Javascript Object Notation) which extends JSON objects with

hypermedia capabilities. The context mechanism (a special field) provides a window to the Linked Data

and Semantic Web universes. This enables, for example, Activity payloads to contain metadata links in

standardized and machine-readable ways. These links, in turn, enable potentially a broader and more

flexible Semantic Network, where federated Servers and Clients make use of a wider cloud of information

services (e.g., Open Data) and are less constrained by fixed data formats and vocabularies. This design

decision may potentially help the exchange of semantically more complex, not a-priory explicitly specified

Activities.

2.5.2 Activity Types

The Activity object type serves as an abstract base type for all types of Activities. There is a vast range

of Activities that can be represented (for example, Create, Update, Follow, Like, Block, etc). In addition,

implementations are free to introduce new desired types of Activities beyond those defined by the Activity

Vocabulary. Activity objects enable both passive and imperative operations. In the passive sense, the

Activity is used to record that an Activity has occurred or is occurring. In the imperative sense, the

Activity can be used as a form of command. It instructs the Server to modify the network state in a

manner consistent with the action being described.

10
Open Risk

Tensor Representations of ActivityPub Networks

2.6 Actor Inbox and Outbox

On an ActivityPub compliant Server, individual user accounts (Actors) have both an Inbox and an Outbox

endpoint. These API endpoints accept HTTP GET and POST requests (they are URLs that are accessible

on the Server and listed in the ActivityPub Actor’s profile description). Actor-to-Actor message exchanges

in ActivityPub networks are thus somewhat analogous to email communication and the choice of language

aims to suggest that. The Inbox and Outbox properties are live parts of the system and a cornerstone

aspect of the implied ActivityPub Social Graph. They are essentially the endpoints of the graph edges.

More specifically, the Inbox is the mechanism that enables Actors to receive Activity messages from the

ActivityPub world. The Inbox URL Link is discovered through the Inbox property of an Actor’s profile.

Inboxes of Actors on federated Servers accept HTTP POST requests that send such messages. The Inbox

stream will contain all Activities received by the Actor. The user/owner of an Inbox is generally able to

access all of their Inbox contents. On the other hand, the Outbox is how Actors send Activity messages

to other Actors in the network. The Outbox link is discovered through the Outbox property of an Actor’s

profile. A Client GET request from a Actor’s Outbox URL will receive a JSON-LD list of Activities.

The Outbox will be an OrderedCollection which represents a chronologically ordered list of Activities. In

summary, we have the following actions:

• GET from Inbox URL: Actor receives new Activities sent to them by network Actors.

• POST to Inbox URL: Servers push Activities intended for the Actor.

• GET from Outbox URL: Other network Actors get Activities created by the Actor.

• POST to Outbox URL: Actor publishes new Activities.

2.6.1 Following and Followers

According to the protocol, Actors should have (but need not have) the Following and Followers properties.

While not mandatory, these properties are the raison-d’être of a federated network. Without them there

is no real network structure. An alternative wording of those properties that abstracts away from social

media usage might be Subscribing to and Subscribed by. The Following property of an Actor is a Link

to an ActivityStreams collection of Actors that this Actor is Following (subscribing to). It expresses the

interest of an Actor to be informed (be passed messages by this list of other Actors). It also captures

the fact that a list of other Actors have consented to be followed. The Followed property is a Link to an

ActivityStreams collection of the Actors that follow (subscribe) to this Actor. It expresses the interest of

other local or remote Actors to be informed by means of Activity messages from this Actor.

2.6.2 Moderation

This is a specialized topic in the context of the present discussion, but it is instructive to discuss the

level of additional detail that might be required before one has a realistic representation of what happens

in such as federated network in terms of actual information flow. Broadly speaking, in social network

parlance moderation is a set of policies available to privileged users (administrators or moderators) that

can modulate both the graph evolution (who can see and connect with whom) and the propagation of

information (what messages are seen by whom). This topic is particularly relevant for the user experience.

11
Open Risk

Tensor Representations of ActivityPub Networks

It is discussed extensively in the context centralized social networks but applies as well to federated

networks [35]. Growing user bases creates challenges for administrators [36].

In terms of moderation primitives, ActivityPub defines in this direction the Block Activity (within the

user ”Reaction” category of Activities). This action indicates that the Actor is blocking an object. The

typical use of this functionality is to support systems that allow a user to block Activities or content of

other users. The blocking of other Servers by Server administrators (termed defederation) is outside the

scope of the ActivityPub specification but is important for defining the network structure. A Blocking

activity can in principle be conceptualized as a negative edge [27]. Such a network can be captured, for

example, as a weighted directed graph, with the weights being w ∈ (+1,−1).

In practice, the degree of interoperability within ActivityPub networks depends on the ability

and willingness to federate. Ability reflects foremost the implementation choices of respective

software platforms. Willingness reflects rather administrative choices of individual Servers.

3 Fundamental Graph Correspondences

We now have enough of a sketch of how ActivityPub network work to formulate the core correspondence

to mathematical graphs. The salient features of ActivityPub networks that we need to capture first are

the following:

• Actors exist within Servers.

• A Server must have at least one Actor to be part of the network.

• Connections between Servers are established through Actor actions. Servers do not proactively

discover and network with other Servers of their own accord. Modifications of the Social Graph are

linked to Actor actions.

• Actors receive and send information messages through Server operations.

The ActivityPub social graph is thus constructed and expanded via the Following and Followers col-

lections of each Actor. Practically this happens when a user on one Server finds and follows a user on

another Server. Servers maintain a list of remote Actor accounts that their own users/Actors follow and

subscribe to their posts. Servers communicate with other Servers and propagate information across the

social graph by posting Activities to Actors’ Inbox endpoints.6

6In reality the information diffusion patterns in popular current ActivityPub implementations are more complicated: To

reduce resource requirements for typical social media use cases (e.g., supporting a public timeline) a number of concepts

such as shared inboxes and public addressing have been added to the protocol.

12
Open Risk

Tensor Representations of ActivityPub Networks

The term Social Graph in the context of ActivityPub networks has the following two distinct

meanings:

1. The full graph that is the union of all decentralized sets of nodes and edges across all

federating Servers (encompassing both private and public relations). This graph captures

the real user experience, but is in principle only available to a theoretical party (a panop-

ticon) that can authenticate with all existing ActivityPub Servers and has access to all

Actor’s Following collections.

2. The public and in principle partial graph that is the union of the subset of public relations.

This partial graph can be reconstructed by any interested party that will crawl existing

Servers. It may deviate significantly from the full graph (and potentially be a biased

representation of it).

The importance of that distinction is maybe more clear if we consider again the two main motivations for

mathematical graph representations: the empirical analysis of network data and the simulation of network

performance. The former will in general be performed on public data while the latter can simulate more

faithful configurations.

Administrators or other third parties can crawl the public web and discover other Servers, but the

actual persistent connectivity and, thus, eventual exchange of information can only be achieved via Actor

actions. We have already seen that Actors are naturally mapped to being nodes of a graph. By the same

token, Actors are connected by graph edges, which describe relations, interactions or associations. When

relationships are symmetric (bidirectional) they are described most economically with an undirected graph

(the edges have no directionality or arrows). ActivityPub networks will in general exhibit asymmetric

relationships, so we will use directional graphs by default. We can already make an introductory visual

presentation of Actors and Follow/Following relations in Fig. 1.

3.1 Simplified Graph Representation

The classic, simple (with no self-loops), directed graph is sufficient to describe the Following/Followed

connectivity of Actors within a single Server. Consider an ordered pair G = (V,E) comprising:

• V , a set of vertexes (also called nodes) with each vi ∈ V representing a Actor.

• E ⊆ {(vi, vj)|(vi, vj) ∈ V × V ∧ i ̸= j}, a set of edges (also called links), which are ordered pairs of

vertexes representing relations between Actors.

We put that definition to work immediately in Fig. 2. We imagine a small collection of Actors all

registered within the same Server. The graph depicts various possible Actor connectivity patterns: Actors

that do not follow and are not followed by anyone and Actors that have a mix of symmetric / asymmetric

connections. This model can be useful to analyze sub-graphs of a network, in particular if the Server

instance is large.

3.1.1 Adjacency Matrix Representation

The duality between network graphs and matrix representations is an important aspect of graph theory.

Matrix algebra is a useful tool in graph theory as it allows the expression of important algorithms in

13
Open Risk

Tensor Representations of ActivityPub Networks

Directional Follows

I

Actor I

J

Actor J
Aij

Aji

Symmetric Follow

I

Actor I

J

Actor J
Aij

Asymmetric Follow

Figure 1: Representation of ActivityPub Actors as the indexed nodes and the Follow / Following relations

as edges of the Graph. The direction of the edge arrow points from the Actor who follows to the Actor

that is being followed. Aij denotes the adjacency matrix values (more on that below).

concise mathematical notation and the utilization of a very extended body of linear algebra knowledge.

The core correspondence is established via the notion of an Adjacency Matrix. In the simplest case this is

a boolean matrix (composed exclusively of zeros and ones) representing the connectivity between nodes

in a graph.7. More precisely, for a graph with N nodes, the adjacency matrix is an N ×N matrix whose

(i, j)-th entry Aij is 1, if the vertex vi is connected with an edge to vertex vj and 0 otherwise.

Let us write down the adjacency matrix for our sample graph. We need to first map the Actor nodes

to an index (lets say using alphabetic order). Our example will be a 7× 7 matrix: the 7 rows are laid out

horizontally (ranging over the From nodes) and the 7 columns vertically (ranging over the To nodes). To

obtain the matrix we simply examine all Actors in turn and establish whether they have edges pointing

to other actors (Following). The result of this exercise is:

Aij =



F/T A B C D E F G

A 0 1 1 0 0 0 0

B 1 0 1 1 0 0 0

C 1 0 0 0 0 0 0

D 1 0 0 0 1 0 0

E 0 0 0 1 0 0 0

F 1 0 0 0 0 0 0

G 0 0 0 0 0 0 0


(1)

How can we use this result? There is a long list of useful tools, here we only sketch how this works

at high level. A common operation involving graphs is breadth first search (BFS). A breadth-first-search

algorithm returns the set of all nodes reachable from node i, following the direction of the links (edges)

of the graph. The corresponding matrix operation is to multiply the adjacency matrix A of the graph

7One can introduce also weighted graphs by attaching a real number to each edge

14
Open Risk

Tensor Representations of ActivityPub Networks

Actors Network within a Server

A

D

C

B

E

F

G

Figure 2: A simple directed graph is useful when all Actor connectivity is realized within a single multi-

Actor Server. This is the configuration of a centralized, non-federating platform. This model can be useful

to analyze sub-graphs of a network, in particular if the Server instance is large. It ignores connectivity

outside the Server. The graph depicts various possible Actor connectivity patterns: Actor G does not follow

and is not followed by anyone (They may still receive content from shared inboxes and public information

flows). Actor F only Follows. Other Actors have a mix of symmetric / asymmetric connections whereas

Actor A might be what is termed an influencer, a node with a large number of Follower relations. The

dashed line surrounding all Actors is the periphery of the Server that is hosting them.

15
Open Risk

Tensor Representations of ActivityPub Networks

by a vector u of size N that has a single entry (unity) corresponding to the node i. Using powers, e.g.

A2 = AA of the adjacency matrix one can progressively probe ever wider neighborhoods of this starting

node. Computing the eigenvalues of the adjacency matrix is another important tool in spectral graph

theory that examines fundamental properties that distinguish and characterize graph structure.

3.1.2 Adjacency List Representation

While an adjacency matrix is a mathematical object when used as a data structure it may be inefficient8

when the network is sparse (that is, it has many nodes with few edges). An alternative representation is

the Adjacency List. More precisely, for a graph with N nodes, the adjacency list is a hashtable of size N ,

of the form vi : Si, where Si is the set of nodes to which vi has an edge to (vj ∈ Si if (vi, vj) ∈ E).

A : (B), (C)

B : (A), (C), (D)

C : (A)

D : (A), (E)

E : (D)

F : (A)

G : (∅)

(2)

3.2 Single-Actor Servers

Another use case where the simple direct graph pattern has sufficient realism to usefully describe an

ActivityPub network is when each Server only involves one Actor. This is not a theoretical possibility,

several existing projects implementing ActivityPub are premised on being single-user, self-hosted instances.

In this context the natural identification is to consider each Server as a graph node, and thus leave the

Actor object implicitly associated with its hosting Server. This configuration is visually depicted in Fig. 3.

Importantly, the adjacency matrix is in this case identical to the one we saw previously (Eq. 1).

3.3 More General ActivityPub Networks

The classic graphs discussed above show that are expressive and flexible mathematical tools. Yet as

modeling tools for more general ActivityPub networks they have limitations that have already been alluded

to. Some important open questions are the following:

1. How to represent multiple distinct federating Servers (hence distinguishing between Actors local

to Server and remote Actors that live in different Servers).

2. How to represent Actors of different types. We re-emphasize that Actors are not necessarily

Persons. In the presence of multiple types of Actors (e.g., Groups, Bots etc.) the topological

properties of the network may be quite a bit more complicated.

3. How to represent Servers that enable different types of Activities. Servers that focus on different

use-cases may only partially interoperate.

8Actual performance depends on how the matrix is represented in computer memory as it does not necessarily need to

follow a list of arrays pattern (i.e. sparse matrix storage).

16
Open Risk

Tensor Representations of ActivityPub Networks

Network of Single-Actor Servers

A

D

C

B

E

F

G

Figure 3: When each Server includes only one Actor, another representation of the ActivityPub network

as a simple directed graph is possible. The graph is effectively identical to our previous example. The

difference is that we have multiple servers (indicated by dashed lines), each hosting a single Actor. One

might think of this pattern as one way the decentralized nature of the ActivityPub network approaches

a distributed (or Peer-to-Peer) network. In this simplified architecture analyzing the network of Servers

is identical to analyzing the network of Actors. While single-user Server implementations do exist, with

current technical and usability constraints it is unlikely that such a pattern will be the only relevant

network pattern. Hence more elaborate network models are required.

17
Open Risk

Tensor Representations of ActivityPub Networks

4. How to represent more nuanced relations between Actors. The Following/Followed relation is pivotal

but we already saw how the Blocking Activity introduces more complicated connections. As another

example, Likes/Dislike Activities establish other type of relations between Actors etc.

5. How to represent evolving networks. New or Removed Servers and/or Actors might be represented

as Graph editing operations and require a temporal network approach.

6. Finally, to the degree that we want to track in more detail the Activities pursued by Actors (the

sharing of data objects) we might have to expand the graph structure into more realistic but less

mathematically tractable Property Graphs (which would include e.g., models for data Collections).

Pictorially, the general structure of a fully developed ActivityPub network might look like Fig. 4. Such

a heterogeneous ActivityPub network aims to capture the likelihood of different types of Servers. Hetero-

geneity implies that the type and amount of Actor connectivity and Activity objects that diffuse over the

network varies.

Heterogeneous ActivityPub Network

Blogging (Host)

Blogging (Solo)

Events

Music

Forum B

Forum A

Forum C

CMS

Figure 4: A heterogeneous ActivityPub network that illustrates the coexistence of different types of

Servers. Individual Actors are not shown (in practice one or more Actors will be registered within each

Server node). Heterogeneity implies that the type and amount of Actor connectivity and Activity objects

that diffuse over the network varies. This figure frames the level of our ambition around the mathematical

representation of the network in terms of adjacency tensors, slightly more than a simplest graph repre-

sentation, but substantially far from a detail model of everything that is happening. The trade-off of

generalizations is that there are increasingly fewer linear algebra algorithms available for analysis.

18
Open Risk

Tensor Representations of ActivityPub Networks

4 Multi-Layer Network Representations

4.1 Multilayer Network Notation

Mathematical frameworks for multilayer networks that use tensor algebra have been presented in [33, 37]

and we will follow their general notation and definitions here. A multilayer network starts with the familiar

set of elementary nodes V . We enumerate these nodes explicitly V = {vi}Ni=1. The order |V | = N denotes

the total number of nodes. In addition, we define layers (or aspects) that will encode qualities of nodes

and edges. Sometimes these additional dimensions are denoted colors.

A multilayer network can have any number (d) of such aspects. We define a sequence L = {La}da=1 of

layers for each aspect a. This can be seen as a generalization of a single-layer network (where d = 0, i.e.,

where the elementary nodes are monochromatic). The total number of layers is |L1| × . . . × |Ld|, where
|La| is the number of layer instances for each aspect.

We can then define the multilayer nodes as the Cartesian product VM = V × L1 × . . .× Ld. The nodes

are identified using a set of d+ 1 indices:

V = {vl1,...,ldi }

where i ∈ [1, N] and la ∈ [1, |La|]. An edge set EM of a multilayer network is a set of pairs of possible

combinations of nodes: EM ⊆ VM × VM . Putting everything together we obtain the definition of a

multilayer network as the quadruplet M = (VM , EM , V, L).

4.2 Adjacency Tensors

Loosely speaking, tensors can be seen as generalizations of vectors and matrices. Vectors could be called

rank-1 tensors, they have one index. Matrices are rank-2 tensors, they have two indexes or dimensions.

The more indices, the higher the rank of a tensor. Adjacency Matrices are rank-2 tensors, so they are

inherently limited in the complexity of the relationships they can capture. Adjacency Tensors are higher-

order objects that can potentially capture more complex network relations. The multilayer adjacency

tensor A is a very general object that can be used to represent a wealth of complicated relationships

among nodes. The simplest generalization of an Adjacency Tensor beyond an Adjacency Matrix would

be the fourth-order, or rank-4, tensor Aab
ij where the indices (a, b) range over a single additional layer

dimension (e.g., a count of Server instances) and (i, j) ranges over the nodes (e.g. Actors).

Aab
ij =

{
1 : if link from node (i, a) to node (j, b)

0 : otherwise
(3)

The corresponding adjacency list is of the form vai : Sa
i , where Sa

i is the set of nodes to which vai has an

edge to (vaj ∈ Sa
i if (vai , v

b
j) ∈ EM).

4.3 ActivityPub as Multilayer Networks

The above machinery is what we need to get started with the mapping of concrete ActivityPub networks

into mathematical multilayer networks. What are our options? A large variety of network types can be

represented using the general multilayer-network framework. Here we review some relevant attributes

identified in [33] and how they relate to ActivityPub networks.

19
Open Risk

Tensor Representations of ActivityPub Networks

An ActivityPub Network with multiple Servers

1

2
3

A

D

C

B

E

F

G

Figure 5: An ActivityPub network comprising three Servers with varying numbers of Actors. The under-

lying Actor-to-Actor connectivity is the same as our previous examples.

A first question is about node alignment between layers. A multilayer network is said to be node-aligned

(or fully interconnected) if all the layers contain all nodes. This will in general not be the case for snapshots

of an ActivityPub network. A potentially interesting exception is a node-aligned temporal graph where all

Actors would be present in all temporal layers9. This approach may be a good representation to enable

the analysis of information propagation on an existing network.

At the other extreme, a network may be layer-disjoint. A multilayer network is layer-disjoint if each

Actor exists in at most one layer. This will be typically a relevant category. For example, under the

assumption that ActivityPub Actors are unique to Servers a multilayer network that distinguishes Server

instances will in general be layer-disjoint.10 Another example where the layer-disjoint pattern is relevant

is when we want to represent different Actor types. Each distinct Actor type becomes a layer instance.

From a network modeling perspective we have two degrees of freedom we can exercise: i) the number

of dimensions or aspects we model, this determines the rank of the tensor representation and ii) the size

of each aspect (the number of distinct qualities in each dimension), which determines the index range of

each tensor dimension. As an illustration, a multilayer network representation that recognizes distinct

Servers of the same type is given in Fig. 5.

Note that while the Adjacency Matrix representation provided already for our example is still valid,

it does not encode the fact that Actors reside in distinct Servers. As we have seen in the description

of the protocol, the role of Server instances is quite explicit in the specification (it is a Server-to-Server

9Focusing on an time interval where there are no new nodes
10That assumption will break down if Actors belonging to the same user being active in different Servers get connected.

20
Open Risk

Tensor Representations of ActivityPub Networks

protocol). This is even more so in practical implementations, as it shapes information discovery and

distribution patterns. A second aspect that we can readily model is Server Type.

Multilayer Network: Server Count as Layer

Server 1

Server 2

Server 3

Server 4

Figure 6: The architecture of Mastodon as a decentralized online social network has been discussed in [29].

The architecture distinguishes between two layers: the Server-to-Server layer, made up of all interconnected

Servers (Server N); and the social network layer, formed by the follow relationships between Actors (User

K @ Server N) hosted by the different Servers.

These two facets of a minimal multilayer network that resolves Server types and individual instances

thereof is illustrated in Figures 6 and 7. Putting it all together we obtain the following rank-6 Tensor:

Aabkl
ij =

{
1 : if link from node (i, a, k) to node (j, b, l)

0 : otherwise
(4)

We close by illustrating once again our small network example. Let us write down the adjacency tensor

for our sample graph where we now introduce a Server aspect. The object is Aab
ij . For brevity we will

not list all elements (the adjacency tensor is very sparse in this instance) but only indicatively. First, the

tensor elements A11
ij , which captures the relations within Server 1:

21
Open Risk

Tensor Representations of ActivityPub Networks

Multilayer Network: Server Types as Layer

Server Type I

A

B

C

D

Server Type II

Server Type III

Figure 7: An ActivityPub network comprised of three Server Layers (I, II, III), each representing a different

type of Server. While Actors can in principle Follow and exchange Activities that are jointly recognized,

there will be some subset of Activities that can only occur between some Layers.

A11
ij =



A B C D E F G

A 0 1 1 0 0 0 0

B 1 0 1 0 0 0 0

C 1 0 0 0 0 0 0

D 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0


(5)

Next, the tensor elements A12
ij which capture relations emanating from Server 1 towards Server 2:

A12
ij =



A B C D E F G

A 0 0 0 0 0 0 0

B 0 0 0 1 0 0 0

C 0 0 0 0 0 0 0

D 0 0 0 0 0 0 0

E 0 0 0 0 0 0 0

F 0 0 0 0 0 0 0

G 0 0 0 0 0 0 0


(6)

We notice that the components of adjacency tensor are block sub-matrices. This is a general pattern: an

22
Open Risk

Tensor Representations of ActivityPub Networks

adjacency tensor can always be unrolled into what is called a supra-adjacency matrix. The corresponding

adjacency list will in this case read like:

(A, 1) : (B, 1), (C, 1)

(B, 1) : (A, 1), (C, 1), (D, 2)

(C, 1) : (A, 1)

(D, 2) : (A, 1), (E, 2)

(E, 2) : (D, 2)

(F, 3) : (A, 1)

(G, 3) : (∅)

(7)

23
Open Risk

Tensor Representations of ActivityPub Networks

References

[1] M.D. Koenig and S. Battiston. From Graph Theory to Models of Economic Networks. A Tutorial.

A.K. Naimzada et al. (eds.), Networks, Topology and Dynamics, 2009.

[2] M.D. Flood. On Counterparty Networks. 2015.

[3] Andrea Aguiar, Dror Y. Kenett, Richard Bookstaber, Thomas Wipf. A Map of Collateral Uses and

Flows. Office of Financial Research (OFR) Working Paper Series, 2016.

[4] G. Marti et al. A review of two decades of correlations, hierarchies, networks and clustering in

financial markets. Preprint, 2017.

[5] Simonetta Rosati, Francesco Vacirca. Interdependencies in the euro area derivatives clearing network:

a multi-layer network approach. ECB Working Paper Series, 2019.

[6] D.D. Gatti H. Dawid. Agent-Based Macroeconomics. Universitat Bielefeld: Working Papers in

Economics and Management, 2018.

[7] J.P. Gleeson T.R. Hurd. A framework for analyzing contagion in banking networks. Preprint, 2011.

[8] E. Cerutti and H.Zhou. The Global Banking Network in the Aftermath of the Crisis. IMF Working

Paper, 2017.

[9] P. Csermely et al. Structure and dynamics of core/periphery networks. Journal of Complex Networks,

2013.

[10] C. Joyez. Network Structure of French Multinational Firms. Preprint, 2017.

[11] Z. Poszar et al. Shadow Banking. FRBNY Staff Reports, 2012.

[12] J. Duesenberry. A Process Approach to Flow-of-Funds Analysis. National Bureau of Economic

Research, 1962.

[13] G.L Breton L.B Duc. Flow-of-funds analysis at the ECB. Framework and Applications. 2009.

[14] Financial Stability Board. The Financial Crisis and Information Gaps. Report to the G-20 Finance

Ministers and Central Bank Governors, 2009.

[15] A.G. Haldane. On microscopes and telescopes. Bank of England Speech, 2015.

[16] Wikipedia Authors. Social Network Analysis. Link.

[17] ActivityPub online documentation (as of jan 2024). Link.

[18] Activity Streams 2.0 online specification. Link.

[19] Activity Vocabulary online specification. Link.

[20] Pixelfed Developers. FediDB: Fediverse Network Statistics. Link.

[21] Fediverse enhancement proposals. Link.

[22] Activitypub issue tracker. Link.

https://en.wikipedia.org/wiki/Social_network_analysis
https://w3c.github.io/activitypub/
https://www.w3.org/TR/activitystreams-core/
https://www.w3.org/TR/activitystreams-vocabulary/
https://fedidb.org/
https://codeberg.org/fediverse/fep
https://github.com/w3c/activitypub/issues

24
Open Risk

Tensor Representations of ActivityPub Networks

[23] Valueflows vocabulary for distributed economic networks. Link.

[24] Wikipedia Authors. Object Capability Model. Link.

[25] P. Papadopoulos. WP8: Connecting the Dots: Economic Networks as Property Graphs. Open Risk

White Papers, 2019. Online Link.

[26] P. Papadopoulos. WP10: Connecting the Dots: Concentration, diversity, inequality and sparsity in

economic networks. Open Risk White Papers, 2021. Online Link.

[27] Lucio La Cava, Domenico Mandaglio, Andrea Tagarelli. Polarization in decentralized online social

networks. 2017.

[28] Lucio La Cava, Andrea Tagarelli. Information consumption and boundary spanning in decentralized

online social networks: the case of mastodon users. Online Social Networks and Media, 30, 2022.

[29] Matteo Zignani, Sabrina Gaito, Gian Paolo Rossi. Follow the mastodon: Structure and evolution of

a decentralized online social network. In Proceedings of the Twelfth International AAAI Conference

on Web and Social Media (ICWSM 2018), 2018.

[30] Nickey Obreykov. Evaluating network generation algorithms for decentralized social media platforms.

2021.

[31] Jan Trienes, Andrés Torres Cano, Djoerd Hiemstra. Recommending users: Whom to follow on

federated social networks. 2018.

[32] S. Boccaletti et al. The structure and dynamics of multilayer networks. Physics Reports, 2014.

[33] M. Kivela et al. Multilayer networks. Journal of Complex Networks, 2014.

[34] JSON-LD online documentation. Link.

[35] Alan Z. Rozenshtein. Moderating the fediverse: Content moderation on distributed social media.

2023.

[36] I. H. Anaobi et al. Will admins cope? decentralized moderation in the fediverse. 2023.

[37] Manlio De Domenico et al. Mathematical formulation of multilayer networks. Physical Review X,

2013.

https://www.valueflo.ws/
https://en.wikipedia.org/wiki/Object-capability_model
https://www.openriskmanagement.com/open-risk-white-papers/
https://www.openriskmanagement.com/open-risk-white-papers/
http://json-ld.org/

	Introduction
	Motivation and Objective
	Structure of the White Paper

	ActivityPub Network Structure
	A Bird's Eye View of ActivityPub
	ActivityPub Server Implementations
	ActivityPub Object Hierarchy
	Actors
	Actor Types

	Activities
	Activity Format
	Activity Types

	Actor Inbox and Outbox
	Following and Followers
	Moderation

	Fundamental Graph Correspondences
	Simplified Graph Representation
	Adjacency Matrix Representation
	Adjacency List Representation

	Single-Actor Servers
	More General ActivityPub Networks

	Multi-Layer Network Representations
	Multilayer Network Notation
	Adjacency Tensors
	ActivityPub as Multilayer Networks

