Model Risk

Towards the Semantic Description of Machine Learning Models

Towards the Semantic Description of Machine Learning Models

Reading Time: 7 min.

Semantic Web Technologies integrate naturally with the worlds of open data science and open source machine learning, empowering better control and management of the risks and opportunities that come with increased digitization and model use

The ongoing and accelerating digitisation of many aspects of social and economic life means the proliferation of data driven/data intermediated decisions and the reliance on quantitative models of various sorts (going under various hashtags such as machine learning, artificial intelligence, data science etc.).

Taxonomy of Uncertainty

Taxonomy of Uncertainty

We review and synthesize into a taxonomy a number of related concepts and terms describing uncertainty, risk, randomness and model risk

Reading Time: 14 min.

Risk, Randomness, Uncertainty and other Ambiguous Terms

Uncertainty versus Risk is a popular discussion topic among risk managers, especially after major risk management disasters. The debate can get really hairy and drift into deep philosophical areas about the nature of knowledge etc. Yet the significance of having an as clear as possible language toolkit around these terms should not be underestimated. Practical risk management typically shuns too deep excursions into the meaning of things, yet that is not quite compatible with the use of sophisticated methods and tools (such as a Risk Model ) that assumes an understanding of the scope and limitations of “knowledge”.

Risk Model Ontology

Risk Model Ontology

Reading Time: 2 min.

Semantic Web Technologies

The Risk Model Ontology is a framework that aims to represent and categorize knowledge about risk models using semantic web information technologies.

In principle any semantic technology can be the starting point for a risk model ontology. The Open Risk Manual adopts the W3C’s Web Ontology Language (OWL). OWL is a Semantic Web language designed to represent rich and complex knowledge about things, groups of things, and relations between things. OWL is a computational logic-based language such that knowledge expressed in OWL can be exploited by computer programs, e.g., to verify the consistency of that knowledge or to make implicit knowledge explicit. OWL documents, known as ontologies, can be published in the World Wide Web and may refer to or be referred from other OWL ontologies. OWL is part of the W3C’s Semantic Web technology stack, which includes RDF, RDFS, SPARQL, etc