Semantic Web

Class Inheritance in Data Science

Class Inheritance in Data Science

Object-oriented programming and techniques (OOP) such as using classes and inheritance are common in many application programming environments but don't travel well outside computer memory. When considering data science tasks and objectives the transition from object hierarchies to data structures (and vice versa) is not always straightforward. In this short course we explore how some programming languages, data formats, database API's and web frameworks handle hierarchical classes.

Reading Time: 3 min.

Summary

In this short course we explore how some programming languages, data formats, database API’s and web frameworks handle hierarchical classes.

Content

Object-oriented programming and techniques (OOP) such as using classes and inheritance are common in many application programming environments but alas don’t “travel well” outside computer memory. The potentially intricate relationships of objects (both the data they hold and the meaning and possible uses of the data) are not easy to transfer (except of-course by full replication of code and data). Hence when considering data science tasks and objectives that involving exchange of data, the transition from object hierarchies that live inside memory, to data structures that can be exchanged with another computer is not straightforward.

Open Risk Hydra GSOC 2021 Credit Risk Project Wrap Up

Open Risk Hydra GSOC 2021 Credit Risk Project Wrap Up

Reading Time: 5 min.

NPLO Visualization

The GSOC 2021 collaboration between Open Risk and the Hydra Ecosystem - Project Wrap-Up

Google Summer of Code 2021 came and went amid the still ongoing worldwide pandemic experience. Open Risk was happy to join forces with the Hydra Ecosystem in exploring a proof-of-concept for next generation API’s using Hydra.

Open Risk Mentoring GSOC 2021 Hydra Nextgen API Project

Open Risk Mentoring GSOC 2021 Hydra Nextgen API Project

For the Google Summer of Code 2021 season Open Risk is happy to join forces with the Hydra Ecosystem to mentor a student project that aims to build a hypermedia enabled REST service around standardized credit portfolio data

Reading Time: 4 min.

A GSOC 2021 summer project collaboration between Open Risk and the Hydra Ecosystem

Summer is underway and for the Google Summer of Code 2021 season Open Risk is happy to join forces with the Hydra Ecosystem. The project aims to guide students to build a hypermedia enabled REST service around standardized credit portfolio data. More specifically the project will build a REST service as backend for a hypothetical banking entity that collects and disseminates credit portfolio data conforming to an established public standard (the EBA NPL templates, see below).

Towards the Semantic Description of Machine Learning Models

Towards the Semantic Description of Machine Learning Models

Reading Time: 7 min.

Semantic Web Technologies integrate naturally with the worlds of open data science and open source machine learning, empowering better control and management of the risks and opportunities that come with increased digitization and model use

The ongoing and accelerating digitisation of many aspects of social and economic life means the proliferation of data driven/data intermediated decisions and the reliance on quantitative models of various sorts (going under various hashtags such as machine learning, artificial intelligence, data science etc.).

An introduction to Semantic Python

An introduction to Semantic Python

A CrashCourse introduction to semantic data using Python covering a number of frameworks such as rdflib, owlready and pySHACL

Reading Time: 2 min.

This CrashCourse is an introduction to semantic data using Python.

Course Content

It covers the following topics:

  • We learn to work with RDF graphs using rdflib
  • We explore the owlready package and OWL ontologies
  • We look into json-ld serialization of RDF/OWL data
  • We try data validation using pySHACL
  • We use throughout a realistic data set based on the Credit Ratings Ontology

Semantic Python

Non-Performing Loan Ontology

Non-Performing Loan Ontology

The NPL Ontology (NPLO) is a new ontology describing datasets of Non-Perfoming Loan Portfolios.

Reading Time: 4 min.

NPLO Visualization

The Non-Perfoming Loan Ontology

The Non-Performing Loan Ontology is a framework that aims to represent and categorize knowledge about non-performing loans using semantic web information technologies. Codenamed NPLO, it codifies the relationship between the various components of a Non-Performing Loan portfolio dataset.(NB: Non-performing loans are bank loans that are 90 days or more past their repayment date or that are unlikely to be repaid, for example if the borrower is facing financial difficulties).

Risk Function Ontology

Risk Function Ontology

The Risk Function Ontology (RFO) is a new ontology describing risk management roles (posts) and functions.

Reading Time: 3 min.

RFO Visualization

The Risk Function Ontology

The Risk Function Ontology is a framework that aims to represent and categorize knowledge about risk management functions using semantic web information technologies. Codenamed RFO codifies the relationship between the various components of a risk management organization. Individuals, teams or even whole departments tasked with risk management exist in some shape or form in most organizations. The ontology allows the definition of risk management roles in more precise terms, which in turn can be used in a variety of contexts: towards better structured actual job descriptions, more accurate description of internal processes and easier inspection of alignement and consistency with risk taxonomies. See also live version and the white paper OpenRiskWP04_061415.

openNPL 0.2 REST API implementation

openNPL 0.2 REST API implementation

The 0.2 release of openNPL exposes a RESTful API that provides easy standardized online access to NPL credit portfolio data conforming to the EBA NPL templates

Reading Time: 4 min.

openNPL 0.2 release

The open source openNPL platform supports the management of standardized credit portfolio data for non-performing loans. In this respect it implements the detailed European Banking Authority NPL loan templates. openNPL aims to be at the same time easy to integrate in human workflows (using a familiar web interface) and integrate into automated (computer driven) workflows.

Making Open Risk Data easier

Making Open Risk Data easier

We introduce an online database that allows the (relatively) easy publication of structured risk data

Reading Time: 1 min.

Making Open Risk Data easier

In an earlier blog post we discussed the promise of Open Risk Data and how the widespread availability of good information that is relevant for risk management can substantially help mitigate diverse risks.

The list of Open Risk Data providers, particularly from public sector, keeps increasing and we are aiming to document all available datasets in the dedicated page of the Open Risk Manual.

Risk Model Ontology

Risk Model Ontology

Reading Time: 2 min.

Semantic Web Technologies

The Risk Model Ontology is a framework that aims to represent and categorize knowledge about risk models using semantic web information technologies.

In principle any semantic technology can be the starting point for a risk model ontology. The Open Risk Manual adopts the W3C’s Web Ontology Language (OWL). OWL is a Semantic Web language designed to represent rich and complex knowledge about things, groups of things, and relations between things. OWL is a computational logic-based language such that knowledge expressed in OWL can be exploited by computer programs, e.g., to verify the consistency of that knowledge or to make implicit knowledge explicit. OWL documents, known as ontologies, can be published in the World Wide Web and may refer to or be referred from other OWL ontologies. OWL is part of the W3C’s Semantic Web technology stack, which includes RDF, RDFS, SPARQL, etc

Version 0.2 of the Open Risk API incorporates the standardized EBA portfolio data templates

Version 0.2 of the Open Risk API incorporates the standardized EBA portfolio data templates

Reading Time: 2 min.

Extending the Open Risk API to include the EBA Portfolio Data Templates

The Open Risk API provides a mechanism to integrate arbitrary collections of risk data and risk modelling resources in the context of assessing and managing financial risk. It is based on two key technologies of the modern Web, RESTful architectures and Semantic Data.

From Big Data, to Linked Data and Linked Models

From Big Data, to Linked Data and Linked Models

Reading Time: 5 min.

From Big Data, to Linked Data and Linked Models

The big data problem:

As certainly as the sun will set today, the big data explosion will lead to a big clean-up mess

How do we know? It is simply a case of history repeating. We only have to study the still smouldering last chapter of banking industry history. Currently banks are portrayed as something akin to the village idiot as far as technology adoption is concerned (and there is certainly a nugget of truth to this). Yet it is also true that banks, in many jurisdictions and across trading styles and business lines, have adopted data driven models already a long time ago. In fact, long enough ago that we have already observed how it call all ended pear shaped, Great Financial Crisis and all.

Open Risk API

Open Risk API

Reading Time: 3 min.

If you work in financial risk management you will most likely recognize where the following sentence is coming from:

One of the most significant lessons learned from the global financial crisis that began in 2007 was that banks information technology (IT) and data architectures were inadequate to support the broad management of financial risks. This had severe consequences to the banks themselves and to the stability of the financial system as a whole