Python

Overview of the Julia-Python-R Universe

Overview of the Julia-Python-R Universe

We introduce a side-by-side review of the main open source ecosystems supporting the Data Science domain: Julia, Python, R, the trio sometimes abbreviated as Jupyter

Reading Time: 3 min.
Overview of the Julia-Python-R Universe: A new Open Risk Manual entry offers a side-by-side review of the main open source ecosystems supporting the Data Science domain: Julia, Python, R, sometimes abbreviated as Jupyter. Motivation A large component of Quantitative Risk Management relies on data processing and quantitative tools (aka Data Science ). In recent years open source software targeting Data Science finds increased adoption in diverse applications. The overview of the Julia-Python-R Universe article is a side by side comparison of a wide range of aspects of Python, Julia and R language ecosystems.
Open Source Securitisation

Open Source Securitisation

Reading Time: 5 min.
Open Source Securitisation: Motivation After the Great Financial Crisis securitisation has become the poster child of a financial product exhibiting complexity and opaqueness. The issues and lessons learned post-crisis were many, involving all aspects of the securitisation process, from the nature and quality of the underlying assets, the incentives of the various agents involved and the ability of investors to analyze the products they invested in. While the most egregious complications involved various types of re-securitisation and/or the interplay of structured credit derivatives undoubtedly even vanilla securitisation structure has a considerable amount of business logic.
Python versus R Language: A side by side comparison for quantitative risk modeling

Python versus R Language: A side by side comparison for quantitative risk modeling

Reading Time: 3 min.
Motivation for the comparison: A large component of risk management relies on data processing and quantitative tools. In turn, such information processing pipelines and numerical algorithms must be implemented in computer systems. Computing systems come in an extraordinary large variety but in recent years open source software finds increased adoption for diverse applications (machine learning, data science, artificial intelligence). In particular cloud computing environments are primarily based on open source projects at the systems level.
Version 0.4 of the Concentration Library adds geographic / industrial concentration functionality

Version 0.4 of the Concentration Library adds geographic / industrial concentration functionality

Reading Time: 1 min.
Release of version 0.4 of the Concentration Library adds Geographic / Industrial concentration indexes: Further building out the OpenCPM set of tools, we release version 0.4 of the Concentration Library, a python library for the computation of various concentration, diversification and inequality indices. The below list provides documentation URL’s for each one of the implemented classic indexes (the Hoover index is a new addition in this release Atkinson Index Hoover Index Concentration Ratio Berger-Parker Index Herfindahl-Hirschman Index Hannah-Kay Index Gini Index Theil Index Shannon Index Generalized Entropy Index Kolm Index An important new direction that appears first in this release is the introduction of indexes that measure geographical and industrial concentration.
Release of version 0.3 of the Concentration Library

Release of version 0.3 of the Concentration Library

Reading Time: 0 min.
Release of version 0.3 of the Concentration Library: Further building out the OpenCPM set of tools, we release version 0.3 of the Concentration Library. This python library for the computation of various concentration, diversification and inequality indices. The below list provides documentation URL’s for each one of the implemented indexes Atkinson Index Concentration Ratio Berger-Parker Index Herfindahl-Hirschman Index Hannah-Kay Index Gini Index Theil Index Shannon Index Generalized Entropy Index Kolm Index The image illustrates a simple use of the library where the HHI and Gini indexes are computed and compared for a range of randomly generated portfolio exposures.
Transition Matrix Library First Release

Transition Matrix Library First Release

Reading Time: 2 min.
Open Risk released version 0.1 of the Transition Matrix Library Motivation: State transition phenomena where a system exhibits stochastic (random) migration between well defined discrete states (see picture below for an illustration) are very common in a variety of fields. Depending on the precise specification and modelling assumptions they may go under the name of multi-state models, Markov chain models or state-space models. In financial applications a prominent example of phenomena that can be modelled using state transitions are credit rating migrations of pools of borrowers.
Loan Level Templates Using Python

Loan Level Templates Using Python

Reading Time: 0 min.
Loan Level Templates Using Python: In this Open Risk Academy course we figure step by step how to use python to work with Loan Level Templates, using the ECB SME template as an example. Overview of the loan level template Manipulating spreadsheets with Python The Python Dictionary Organization of Portfolio Data Generating Test Portfolios Get an Open Risk Academy account and get started with the course here This blog has been verified by Rise: Rcf8d5e45f6964ba5d03bda4020a97dda
How much digital bank can we fit in a 50 euro bill?

How much digital bank can we fit in a 50 euro bill?

Reading Time: 2 min.
How much digital bank can we fit in a 50 euro bill? Much has been said about the impact of Big Data and high-end GPU computing on the provision of digital financial services. At Open Risk we wanted to explore the boundary of what is possible at the diametrically opposite end of the cost spectrum: What is the absolutely minimum cost for providing digital financial services? . In this post we begin the journey of finding out the answer to that question and it promises to be fascinating!
Google Summer of Code Ideas List Page

Google Summer of Code Ideas List Page

Reading Time: 1 min.
Google Summer of Code Ideas List Page: Over the course of the years we have seen many an open source project that we love and use daily participate as mentoring organizations in Google’s great communal activity. This year Open Risk applied to join the effort to promote open source, in particular as it applies in the less visited area of financial risk management. The following is a list of ideas for projects where students can participate (subject to us getting approved as mentoring organization!
Open Source Risk Data with MongoDB and Python

Open Source Risk Data with MongoDB and Python

Reading Time: 3 min.
Open Source Risk Data with MongoDB and Python: Open source software is all the rage those days in IT and the concept is making rapid inroads in all parts of the enterprise. An earlier comprehensive survey by Gartner, Inc. found that by 2011 more than half of organizations surveyed had adopted open-source software (OSS) solutions as part of their IT strategy. This percentage may have currently exceeded the 75% mark according to open source advisory firms.
Open Source Risk Modeling Manifesto

Open Source Risk Modeling Manifesto

Reading Time: 7 min.
Open Source Risk Modeling Manifesto: This post is a summary of a presentation given at the 2014 Autumn TopQuants Meeting, aka, the Open Source Risk Modeling Manifesto. The dismal state of quantitative risk modeling The current framework of internal risk modeling at financial institutions has had a fatal triple stroke. We saw in quick sequence: market risk, operational risk, and credit risk measurement failures, covering practically all business models.